Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767118192> ?p ?o ?g. }
- W2767118192 endingPage "4534" @default.
- W2767118192 startingPage "4528" @default.
- W2767118192 abstract "Object categorization refers to the task of automatically classifying objects based on the visual content. Existing approaches simply represent each image with the visual features without considering the specific characters of images within the same class. However, objects of the same class may exhibit unique characters, which should be represented accordingly. In this brief, we propose a novel class-specific representation strategy for object categorization. For each class, we first model the characters of images within the same class using Gaussian mixture model (GMM). We then represent each image by calculating the Euclidean distance and relative Euclidean distance between the image and the GMM model for each class. We concatenate the representations of each class for joint representation. In this way, we can represent an image by not only considering the visual contents but also combining the class-specific characters. Experiments on several public available data sets validate the superiority of the proposed class-specific representation method over well-established algorithms for object category predictions." @default.
- W2767118192 created "2017-11-10" @default.
- W2767118192 creator A5000727470 @default.
- W2767118192 creator A5008934460 @default.
- W2767118192 creator A5047455588 @default.
- W2767118192 creator A5061670980 @default.
- W2767118192 creator A5064564309 @default.
- W2767118192 date "2018-09-01" @default.
- W2767118192 modified "2023-09-25" @default.
- W2767118192 title "Object Categorization Using Class-Specific Representations" @default.
- W2767118192 cites W1223058609 @default.
- W2767118192 cites W1652450286 @default.
- W2767118192 cites W1948072141 @default.
- W2767118192 cites W1950831375 @default.
- W2767118192 cites W1966385142 @default.
- W2767118192 cites W1988898685 @default.
- W2767118192 cites W2000355138 @default.
- W2767118192 cites W2000714550 @default.
- W2767118192 cites W2027922120 @default.
- W2767118192 cites W2040999325 @default.
- W2767118192 cites W2046385669 @default.
- W2767118192 cites W2048335335 @default.
- W2767118192 cites W2049632392 @default.
- W2767118192 cites W2051065934 @default.
- W2767118192 cites W2090042335 @default.
- W2767118192 cites W2098411764 @default.
- W2767118192 cites W2109025943 @default.
- W2767118192 cites W2112464244 @default.
- W2767118192 cites W2131846894 @default.
- W2767118192 cites W2141350700 @default.
- W2767118192 cites W2147625498 @default.
- W2767118192 cites W2150856297 @default.
- W2767118192 cites W2162762921 @default.
- W2767118192 cites W2162915993 @default.
- W2767118192 cites W2168951883 @default.
- W2767118192 cites W2213472736 @default.
- W2767118192 cites W2267727210 @default.
- W2767118192 cites W2283469138 @default.
- W2767118192 cites W2294130536 @default.
- W2767118192 cites W2328317224 @default.
- W2767118192 cites W2343962831 @default.
- W2767118192 cites W2386210108 @default.
- W2767118192 cites W2536305071 @default.
- W2767118192 cites W2606467623 @default.
- W2767118192 cites W2738755994 @default.
- W2767118192 cites W3143107425 @default.
- W2767118192 doi "https://doi.org/10.1109/tnnls.2017.2757497" @default.
- W2767118192 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29990030" @default.
- W2767118192 hasPublicationYear "2018" @default.
- W2767118192 type Work @default.
- W2767118192 sameAs 2767118192 @default.
- W2767118192 citedByCount "7" @default.
- W2767118192 countsByYear W27671181922019 @default.
- W2767118192 countsByYear W27671181922020 @default.
- W2767118192 countsByYear W27671181922021 @default.
- W2767118192 countsByYear W27671181922022 @default.
- W2767118192 crossrefType "journal-article" @default.
- W2767118192 hasAuthorship W2767118192A5000727470 @default.
- W2767118192 hasAuthorship W2767118192A5008934460 @default.
- W2767118192 hasAuthorship W2767118192A5047455588 @default.
- W2767118192 hasAuthorship W2767118192A5061670980 @default.
- W2767118192 hasAuthorship W2767118192A5064564309 @default.
- W2767118192 hasConcept C115961682 @default.
- W2767118192 hasConcept C120174047 @default.
- W2767118192 hasConcept C129782007 @default.
- W2767118192 hasConcept C153180895 @default.
- W2767118192 hasConcept C154945302 @default.
- W2767118192 hasConcept C17744445 @default.
- W2767118192 hasConcept C199539241 @default.
- W2767118192 hasConcept C2524010 @default.
- W2767118192 hasConcept C2776359362 @default.
- W2767118192 hasConcept C2777212361 @default.
- W2767118192 hasConcept C2781238097 @default.
- W2767118192 hasConcept C33923547 @default.
- W2767118192 hasConcept C41008148 @default.
- W2767118192 hasConcept C64876066 @default.
- W2767118192 hasConcept C94124525 @default.
- W2767118192 hasConcept C94625758 @default.
- W2767118192 hasConceptScore W2767118192C115961682 @default.
- W2767118192 hasConceptScore W2767118192C120174047 @default.
- W2767118192 hasConceptScore W2767118192C129782007 @default.
- W2767118192 hasConceptScore W2767118192C153180895 @default.
- W2767118192 hasConceptScore W2767118192C154945302 @default.
- W2767118192 hasConceptScore W2767118192C17744445 @default.
- W2767118192 hasConceptScore W2767118192C199539241 @default.
- W2767118192 hasConceptScore W2767118192C2524010 @default.
- W2767118192 hasConceptScore W2767118192C2776359362 @default.
- W2767118192 hasConceptScore W2767118192C2777212361 @default.
- W2767118192 hasConceptScore W2767118192C2781238097 @default.
- W2767118192 hasConceptScore W2767118192C33923547 @default.
- W2767118192 hasConceptScore W2767118192C41008148 @default.
- W2767118192 hasConceptScore W2767118192C64876066 @default.
- W2767118192 hasConceptScore W2767118192C94124525 @default.
- W2767118192 hasConceptScore W2767118192C94625758 @default.
- W2767118192 hasFunder F4320321001 @default.
- W2767118192 hasFunder F4320321572 @default.
- W2767118192 hasFunder F4320338281 @default.
- W2767118192 hasIssue "9" @default.