Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767122664> ?p ?o ?g. }
- W2767122664 endingPage "1339" @default.
- W2767122664 startingPage "1329" @default.
- W2767122664 abstract "We propose a novel technique that learns a low-dimensional feature representation from unlabeled data of a target language, and labeled data from a nontarget language. The technique is studied as a solution to query-by-example spoken term detection (QbE-STD) for a low-resource language. We extract low-dimensional features from a bottle-neck layer of a multitask deep neural network, which is jointly trained with speech data from the low-resource target language and resource-rich nontarget language. The proposed feature learning technique aims to extract acoustic features that offer phonetic discriminability. It explores a new way of leveraging cross-lingual speech data to overcome the resource limitation in the target language. We conduct QbE-STD experiments using the dynamic time warping distance of the multitask bottle-neck features between the query and the search database. The QbE-STD process does not rely on an automatic speech recognition pipeline of the target language. We validate the effectiveness of multitask feature learning through a series of comparative experiments." @default.
- W2767122664 created "2017-11-10" @default.
- W2767122664 creator A5032690182 @default.
- W2767122664 creator A5033976028 @default.
- W2767122664 creator A5041924819 @default.
- W2767122664 creator A5073685161 @default.
- W2767122664 creator A5083135482 @default.
- W2767122664 date "2017-12-01" @default.
- W2767122664 modified "2023-09-24" @default.
- W2767122664 title "Multitask Feature Learning for Low-Resource Query-by-Example Spoken Term Detection" @default.
- W2767122664 cites W1499332833 @default.
- W2767122664 cites W1539935047 @default.
- W2767122664 cites W1545083717 @default.
- W2767122664 cites W1545920196 @default.
- W2767122664 cites W1577418252 @default.
- W2767122664 cites W1580290522 @default.
- W2767122664 cites W1967924372 @default.
- W2767122664 cites W1984076147 @default.
- W2767122664 cites W1997505733 @default.
- W2767122664 cites W2020607164 @default.
- W2767122664 cites W2025198378 @default.
- W2767122664 cites W2094035326 @default.
- W2767122664 cites W2094721296 @default.
- W2767122664 cites W2106284094 @default.
- W2767122664 cites W2110589736 @default.
- W2767122664 cites W2114347655 @default.
- W2767122664 cites W2126203737 @default.
- W2767122664 cites W2137044559 @default.
- W2767122664 cites W2137630452 @default.
- W2767122664 cites W2154085905 @default.
- W2767122664 cites W2154093685 @default.
- W2767122664 cites W2171019095 @default.
- W2767122664 cites W2186319236 @default.
- W2767122664 cites W2347098582 @default.
- W2767122664 cites W2509930204 @default.
- W2767122664 cites W2511733680 @default.
- W2767122664 cites W2511774920 @default.
- W2767122664 cites W2513125788 @default.
- W2767122664 cites W2518166530 @default.
- W2767122664 cites W2566925314 @default.
- W2767122664 cites W2592866267 @default.
- W2767122664 cites W2913340405 @default.
- W2767122664 cites W2962903176 @default.
- W2767122664 cites W2962980711 @default.
- W2767122664 cites W2963571336 @default.
- W2767122664 cites W2963684067 @default.
- W2767122664 cites W3104240813 @default.
- W2767122664 cites W2586754519 @default.
- W2767122664 doi "https://doi.org/10.1109/jstsp.2017.2764270" @default.
- W2767122664 hasPublicationYear "2017" @default.
- W2767122664 type Work @default.
- W2767122664 sameAs 2767122664 @default.
- W2767122664 citedByCount "13" @default.
- W2767122664 countsByYear W27671226642017 @default.
- W2767122664 countsByYear W27671226642018 @default.
- W2767122664 countsByYear W27671226642019 @default.
- W2767122664 countsByYear W27671226642020 @default.
- W2767122664 countsByYear W27671226642021 @default.
- W2767122664 countsByYear W27671226642023 @default.
- W2767122664 crossrefType "journal-article" @default.
- W2767122664 hasAuthorship W2767122664A5032690182 @default.
- W2767122664 hasAuthorship W2767122664A5033976028 @default.
- W2767122664 hasAuthorship W2767122664A5041924819 @default.
- W2767122664 hasAuthorship W2767122664A5073685161 @default.
- W2767122664 hasAuthorship W2767122664A5083135482 @default.
- W2767122664 hasConcept C138885662 @default.
- W2767122664 hasConcept C154945302 @default.
- W2767122664 hasConcept C162324750 @default.
- W2767122664 hasConcept C164120249 @default.
- W2767122664 hasConcept C187736073 @default.
- W2767122664 hasConcept C194222762 @default.
- W2767122664 hasConcept C199360897 @default.
- W2767122664 hasConcept C204321447 @default.
- W2767122664 hasConcept C206345919 @default.
- W2767122664 hasConcept C23123220 @default.
- W2767122664 hasConcept C2776230583 @default.
- W2767122664 hasConcept C2776401178 @default.
- W2767122664 hasConcept C2780451532 @default.
- W2767122664 hasConcept C28006648 @default.
- W2767122664 hasConcept C28490314 @default.
- W2767122664 hasConcept C31258907 @default.
- W2767122664 hasConcept C41008148 @default.
- W2767122664 hasConcept C41895202 @default.
- W2767122664 hasConcept C43521106 @default.
- W2767122664 hasConcept C59404180 @default.
- W2767122664 hasConcept C88516994 @default.
- W2767122664 hasConcept C97854310 @default.
- W2767122664 hasConceptScore W2767122664C138885662 @default.
- W2767122664 hasConceptScore W2767122664C154945302 @default.
- W2767122664 hasConceptScore W2767122664C162324750 @default.
- W2767122664 hasConceptScore W2767122664C164120249 @default.
- W2767122664 hasConceptScore W2767122664C187736073 @default.
- W2767122664 hasConceptScore W2767122664C194222762 @default.
- W2767122664 hasConceptScore W2767122664C199360897 @default.
- W2767122664 hasConceptScore W2767122664C204321447 @default.
- W2767122664 hasConceptScore W2767122664C206345919 @default.
- W2767122664 hasConceptScore W2767122664C23123220 @default.
- W2767122664 hasConceptScore W2767122664C2776230583 @default.