Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767215824> ?p ?o ?g. }
- W2767215824 abstract "Colorless Green Ideas Sleep Furiously Revisited: A Statistical Perspective Florencia Reali (fr34@cornell.edu) Rick Dale (rad28@cornell.edu) Morten H. Christiansen (mhc27@cornell.edu) Department of Psychology; Cornell University; Ithaca, NY 14853 USA Abstract In the present study we provide empirical evidence that human learners succeed in an artificial-grammar learning task that involves recognizing grammatical sequences whose bigram frequencies from the training corpus are zero. This result begs explanation: Whatever strategy is being used to perform the task, it cannot rely on the simple co-occurrence of elements in the training corpus. While rule-based mechanisms may offer an account, we propose that a statistical learning mechanism is able to capture these behavioral results. A simple recurrent network is shown to learn sequences that contain null-probability bigram information by simply relying on distributional information in a training corpus. The present results offer a simple but stark challenge to previous objections to statistical learning approaches to language acquisition that are based on sparseness of the primary linguistic data. Introduction The importance of statistical structure in language learning and processing has been a matter of intense debate. Initial data-driven empirical approaches embraced the idea that word co-occurrences are important sources of information in language processes (e.g., Harris, 1951). This approach fell out of favor in the 1950’s, in part due to the influential work of Noam Chomsky (1957) who believed that language behavior should be analyzed at a much deeper level than its surface statistics. In one of his most famous examples, he pointed out that it is reasonable to assume that neither the sentence (1) Colorless green ideas sleep furiously nor (2) Furiously sleep ideas green colorless has ever occurred, and yet (1), though nonsensical, is grammatical, while (2) is not. Therefore, a common argument against statistical approaches to language is that there are sentences containing low or zero probability sequences of words that can nonetheless be judged as grammatical. As Chomsky remarked, “… we are forced to conclude that ... probabilistic models give no particular insight into some of the basic problems of syntactic structure (Chomsky, 1957, p. 17). Most theoretical linguists have accepted this argument, developing little interest in the role of statistical approaches to language. Recently there has been a reappraisal of statistical approaches, partly motivated by research indicating that distributional regularities may provide an important source of information for bootstrapping syntax (e.g., Redington, Chater & Finch, 1998; Mintz, 2002)—especially when integrated with prosodic or phonological information (e.g., Morgan, Meier & Newport, 1987; Monaghan, Chater & Christiansen, in press). Moreover, statistical approaches have been supported by recent research demonstrating that young infants are sensitive to statistical information inherent in bigram transitional probabilities (e.g., Saffran, Aslin & Newport, 1996; –for a review, see Gomez & Gerken, 2000). These studies demonstrate that at least some learning mechanisms employed by infants are statistical in nature. However, as suggested by the perceived grammaticality of sentences like (1), human learning capacities certainly need to go beyond the information conveyed by item co- occurrences. In the present study we explore the extent to which humans are capable of learning the regularities of an artificial grammar, and generalizing them to new sentences in which transitional probabilities are completely uninformative. The task involves “discovering” the underlying regularities and using them to recognize sequences in which the bigram transitions are completely novel. We find that humans perform well in this task. Two possible explanations could account for these results. First, as previously suggested (Marcus, Vijayan, Bandi Rao & Vishton, 1999), it could be that humans possess at least two learning mechanisms, one for learning statistical information and another for learning “algebraic” rules. Thus, regardless of available statistics, we could rely on open-ended abstract relationships into which we substitute arbitrary items. In an artificial-grammar learning scenario, we could know the structure or rules underlying a grammar and substitute variables with specific examples by mechanisms independent of the surface statistical information. This rule-based mechanism could therefore account for our ability to successfully generalize to sequences with uninformative bigram probabilities. Alternatively, we suggest that there is a second and equally plausible account. In this paper we demonstrate that this generalization can be accounted for on the basis of distributional learning. In the second part of this paper, we show that a simple connectionist model, trained purely on distributional information, is capable of simulating correct grammaticality judgments of test sentences that comprise bigram transitions absent in the training corpus. These" @default.
- W2767215824 created "2017-11-17" @default.
- W2767215824 creator A5026930125 @default.
- W2767215824 creator A5081621956 @default.
- W2767215824 creator A5084091340 @default.
- W2767215824 date "2005-01-01" @default.
- W2767215824 modified "2023-09-23" @default.
- W2767215824 title "Colorless Green Ideas Sleep Furiously Revisited: A Statistical Perspective" @default.
- W2767215824 cites W1557168788 @default.
- W2767215824 cites W1597524164 @default.
- W2767215824 cites W1979539191 @default.
- W2767215824 cites W1980862600 @default.
- W2767215824 cites W1981922751 @default.
- W2767215824 cites W1982016222 @default.
- W2767215824 cites W2014754708 @default.
- W2767215824 cites W2049521441 @default.
- W2767215824 cites W2051123508 @default.
- W2767215824 cites W2070586582 @default.
- W2767215824 cites W2076332735 @default.
- W2767215824 cites W2092567368 @default.
- W2767215824 cites W2099747601 @default.
- W2767215824 cites W2103660272 @default.
- W2767215824 cites W2110485445 @default.
- W2767215824 cites W2111971553 @default.
- W2767215824 cites W2132730112 @default.
- W2767215824 cites W2137294131 @default.
- W2767215824 cites W2151834591 @default.
- W2767215824 cites W2315366077 @default.
- W2767215824 cites W2618096942 @default.
- W2767215824 cites W2809981375 @default.
- W2767215824 hasPublicationYear "2005" @default.
- W2767215824 type Work @default.
- W2767215824 sameAs 2767215824 @default.
- W2767215824 citedByCount "1" @default.
- W2767215824 crossrefType "journal-article" @default.
- W2767215824 hasAuthorship W2767215824A5026930125 @default.
- W2767215824 hasAuthorship W2767215824A5081621956 @default.
- W2767215824 hasAuthorship W2767215824A5084091340 @default.
- W2767215824 hasConcept C108757681 @default.
- W2767215824 hasConcept C111472728 @default.
- W2767215824 hasConcept C12713177 @default.
- W2767215824 hasConcept C137546455 @default.
- W2767215824 hasConcept C138885662 @default.
- W2767215824 hasConcept C145420912 @default.
- W2767215824 hasConcept C154945302 @default.
- W2767215824 hasConcept C15744967 @default.
- W2767215824 hasConcept C180747234 @default.
- W2767215824 hasConcept C188147891 @default.
- W2767215824 hasConcept C204321447 @default.
- W2767215824 hasConcept C26022165 @default.
- W2767215824 hasConcept C2780586882 @default.
- W2767215824 hasConcept C41008148 @default.
- W2767215824 hasConcept C41895202 @default.
- W2767215824 hasConcept C74672266 @default.
- W2767215824 hasConcept C90805587 @default.
- W2767215824 hasConceptScore W2767215824C108757681 @default.
- W2767215824 hasConceptScore W2767215824C111472728 @default.
- W2767215824 hasConceptScore W2767215824C12713177 @default.
- W2767215824 hasConceptScore W2767215824C137546455 @default.
- W2767215824 hasConceptScore W2767215824C138885662 @default.
- W2767215824 hasConceptScore W2767215824C145420912 @default.
- W2767215824 hasConceptScore W2767215824C154945302 @default.
- W2767215824 hasConceptScore W2767215824C15744967 @default.
- W2767215824 hasConceptScore W2767215824C180747234 @default.
- W2767215824 hasConceptScore W2767215824C188147891 @default.
- W2767215824 hasConceptScore W2767215824C204321447 @default.
- W2767215824 hasConceptScore W2767215824C26022165 @default.
- W2767215824 hasConceptScore W2767215824C2780586882 @default.
- W2767215824 hasConceptScore W2767215824C41008148 @default.
- W2767215824 hasConceptScore W2767215824C41895202 @default.
- W2767215824 hasConceptScore W2767215824C74672266 @default.
- W2767215824 hasConceptScore W2767215824C90805587 @default.
- W2767215824 hasIssue "27" @default.
- W2767215824 hasLocation W27672158241 @default.
- W2767215824 hasOpenAccess W2767215824 @default.
- W2767215824 hasPrimaryLocation W27672158241 @default.
- W2767215824 hasRelatedWork W1554253923 @default.
- W2767215824 hasRelatedWork W173913878 @default.
- W2767215824 hasRelatedWork W1988090409 @default.
- W2767215824 hasRelatedWork W2091283236 @default.
- W2767215824 hasRelatedWork W2130102158 @default.
- W2767215824 hasRelatedWork W2153056496 @default.
- W2767215824 hasRelatedWork W2162034161 @default.
- W2767215824 hasRelatedWork W2231855413 @default.
- W2767215824 hasRelatedWork W2461656015 @default.
- W2767215824 hasRelatedWork W2503769992 @default.
- W2767215824 hasRelatedWork W2561321768 @default.
- W2767215824 hasRelatedWork W2586920128 @default.
- W2767215824 hasRelatedWork W2587830698 @default.
- W2767215824 hasRelatedWork W2594045122 @default.
- W2767215824 hasRelatedWork W2787553038 @default.
- W2767215824 hasRelatedWork W2949807799 @default.
- W2767215824 hasRelatedWork W3011965053 @default.
- W2767215824 hasRelatedWork W3163900540 @default.
- W2767215824 hasRelatedWork W655864 @default.
- W2767215824 hasRelatedWork W3087943918 @default.
- W2767215824 hasVolume "27" @default.
- W2767215824 isParatext "false" @default.
- W2767215824 isRetracted "false" @default.
- W2767215824 magId "2767215824" @default.