Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767224631> ?p ?o ?g. }
- W2767224631 abstract "Tuning application parameters for optimal performance is a challenging combinatorial problem. Hence, techniques for modeling the functional relationships between various input features in the parameter space and application performance are important. We show that simple statistical inference techniques are inadequate to capture these relationships. Even with more complex ensembles of models, the minimum coverage of the parameter space required via experimental observations is still quite large. We propose a deep learning based approach that can combine information from exhaustive observations collected at a smaller scale with limited observations collected at a larger target scale. The proposed approach is able to accurately predict performance in the regimes of interest to performance analysts while outperforming many traditional techniques. In particular, our approach can identify the best performing configurations even when trained using as few as 1% of observations at the target scale." @default.
- W2767224631 created "2017-11-17" @default.
- W2767224631 creator A5007709486 @default.
- W2767224631 creator A5018773011 @default.
- W2767224631 creator A5025115023 @default.
- W2767224631 creator A5026742436 @default.
- W2767224631 creator A5041470575 @default.
- W2767224631 creator A5046632395 @default.
- W2767224631 creator A5057567517 @default.
- W2767224631 creator A5070686608 @default.
- W2767224631 creator A5081506338 @default.
- W2767224631 date "2017-11-12" @default.
- W2767224631 modified "2023-10-16" @default.
- W2767224631 title "Performance modeling under resource constraints using deep transfer learning" @default.
- W2767224631 cites W1971367716 @default.
- W2767224631 cites W1973923004 @default.
- W2767224631 cites W2005073368 @default.
- W2767224631 cites W2009488259 @default.
- W2767224631 cites W2017217780 @default.
- W2767224631 cites W2019675177 @default.
- W2767224631 cites W2032136713 @default.
- W2767224631 cites W2033088400 @default.
- W2767224631 cites W2039789965 @default.
- W2767224631 cites W2041876368 @default.
- W2767224631 cites W2045128810 @default.
- W2767224631 cites W2057980100 @default.
- W2767224631 cites W2070376917 @default.
- W2767224631 cites W2086036443 @default.
- W2767224631 cites W2147370410 @default.
- W2767224631 cites W2148215368 @default.
- W2767224631 cites W2296250660 @default.
- W2767224631 cites W2329908127 @default.
- W2767224631 cites W2480834041 @default.
- W2767224631 cites W2493625709 @default.
- W2767224631 cites W2518008961 @default.
- W2767224631 cites W2997591727 @default.
- W2767224631 doi "https://doi.org/10.1145/3126908.3126969" @default.
- W2767224631 hasPublicationYear "2017" @default.
- W2767224631 type Work @default.
- W2767224631 sameAs 2767224631 @default.
- W2767224631 citedByCount "32" @default.
- W2767224631 countsByYear W27672246312018 @default.
- W2767224631 countsByYear W27672246312019 @default.
- W2767224631 countsByYear W27672246312020 @default.
- W2767224631 countsByYear W27672246312021 @default.
- W2767224631 countsByYear W27672246312023 @default.
- W2767224631 crossrefType "proceedings-article" @default.
- W2767224631 hasAuthorship W2767224631A5007709486 @default.
- W2767224631 hasAuthorship W2767224631A5018773011 @default.
- W2767224631 hasAuthorship W2767224631A5025115023 @default.
- W2767224631 hasAuthorship W2767224631A5026742436 @default.
- W2767224631 hasAuthorship W2767224631A5041470575 @default.
- W2767224631 hasAuthorship W2767224631A5046632395 @default.
- W2767224631 hasAuthorship W2767224631A5057567517 @default.
- W2767224631 hasAuthorship W2767224631A5070686608 @default.
- W2767224631 hasAuthorship W2767224631A5081506338 @default.
- W2767224631 hasBestOaLocation W27672246312 @default.
- W2767224631 hasConcept C105795698 @default.
- W2767224631 hasConcept C108583219 @default.
- W2767224631 hasConcept C111472728 @default.
- W2767224631 hasConcept C119857082 @default.
- W2767224631 hasConcept C121332964 @default.
- W2767224631 hasConcept C124101348 @default.
- W2767224631 hasConcept C138885662 @default.
- W2767224631 hasConcept C150899416 @default.
- W2767224631 hasConcept C154945302 @default.
- W2767224631 hasConcept C2776214188 @default.
- W2767224631 hasConcept C2778755073 @default.
- W2767224631 hasConcept C2780586882 @default.
- W2767224631 hasConcept C33923547 @default.
- W2767224631 hasConcept C41008148 @default.
- W2767224631 hasConcept C62520636 @default.
- W2767224631 hasConcept C73586568 @default.
- W2767224631 hasConceptScore W2767224631C105795698 @default.
- W2767224631 hasConceptScore W2767224631C108583219 @default.
- W2767224631 hasConceptScore W2767224631C111472728 @default.
- W2767224631 hasConceptScore W2767224631C119857082 @default.
- W2767224631 hasConceptScore W2767224631C121332964 @default.
- W2767224631 hasConceptScore W2767224631C124101348 @default.
- W2767224631 hasConceptScore W2767224631C138885662 @default.
- W2767224631 hasConceptScore W2767224631C150899416 @default.
- W2767224631 hasConceptScore W2767224631C154945302 @default.
- W2767224631 hasConceptScore W2767224631C2776214188 @default.
- W2767224631 hasConceptScore W2767224631C2778755073 @default.
- W2767224631 hasConceptScore W2767224631C2780586882 @default.
- W2767224631 hasConceptScore W2767224631C33923547 @default.
- W2767224631 hasConceptScore W2767224631C41008148 @default.
- W2767224631 hasConceptScore W2767224631C62520636 @default.
- W2767224631 hasConceptScore W2767224631C73586568 @default.
- W2767224631 hasLocation W27672246311 @default.
- W2767224631 hasLocation W27672246312 @default.
- W2767224631 hasOpenAccess W2767224631 @default.
- W2767224631 hasPrimaryLocation W27672246311 @default.
- W2767224631 hasRelatedWork W2946016983 @default.
- W2767224631 hasRelatedWork W2960456850 @default.
- W2767224631 hasRelatedWork W3163306278 @default.
- W2767224631 hasRelatedWork W4213299466 @default.
- W2767224631 hasRelatedWork W4312200629 @default.
- W2767224631 hasRelatedWork W4312685930 @default.
- W2767224631 hasRelatedWork W4317565044 @default.