Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767346422> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2767346422 abstract "Achieving high performance on modern systems is challenging. Even with a detailed profile from a performance tool, writing or refactoring a program to remove its performance issues is still a daunting task for application programmers: it demands lots of program optimization expertise that is often system specific.Vendors often provide some detailed optimization guides to assist programmers in the process. However, these guides are frequently hundreds of pages long, making it difficult for application programmers to master and memorize all the rules and guidelines and properly apply them to a specific problem instance.In this work, we develop a framework named Egeria to alleviate the difficulty. Through Egeria, one can easily construct an advising tool for a certain high performance computing (HPC) domain (e.g., GPU programming) by providing Egeria with a optimization guide or other related documents for the target domain. An advising tool produced by Egeria provides a concise list of essential rules automatically extracted from the documents. At the same time, the advising tool serves as a question-answer agent that can interactively offers suggestions for specific optimization questions. Egeria is made possible through a distinctive multi-layered design that leverages natural language processing techniques and extends them with knowledge of HPC domains and how to extract information relevant to code optimization Experiments on CUDA, OpenCL, and Xeon Phi programming guides demonstrate, both qualitatively and quantitatively, the usefulness of Egeria for HPC." @default.
- W2767346422 created "2017-11-17" @default.
- W2767346422 creator A5030154118 @default.
- W2767346422 creator A5072358589 @default.
- W2767346422 creator A5085489377 @default.
- W2767346422 date "2017-11-12" @default.
- W2767346422 modified "2023-09-24" @default.
- W2767346422 title "Egeria" @default.
- W2767346422 cites W2006217757 @default.
- W2767346422 cites W2032348489 @default.
- W2767346422 cites W2038324640 @default.
- W2767346422 cites W2058230372 @default.
- W2767346422 cites W2061742702 @default.
- W2767346422 cites W2132260309 @default.
- W2767346422 cites W2139356353 @default.
- W2767346422 cites W2152419477 @default.
- W2767346422 cites W2158847908 @default.
- W2767346422 cites W2170088834 @default.
- W2767346422 cites W2171034968 @default.
- W2767346422 cites W2296444013 @default.
- W2767346422 cites W2360370528 @default.
- W2767346422 cites W2997185401 @default.
- W2767346422 cites W4210956481 @default.
- W2767346422 cites W4251372957 @default.
- W2767346422 cites W4256386389 @default.
- W2767346422 doi "https://doi.org/10.1145/3126908.3126961" @default.
- W2767346422 hasPublicationYear "2017" @default.
- W2767346422 type Work @default.
- W2767346422 sameAs 2767346422 @default.
- W2767346422 citedByCount "6" @default.
- W2767346422 countsByYear W27673464222018 @default.
- W2767346422 countsByYear W27673464222020 @default.
- W2767346422 countsByYear W27673464222021 @default.
- W2767346422 countsByYear W27673464222022 @default.
- W2767346422 crossrefType "proceedings-article" @default.
- W2767346422 hasAuthorship W2767346422A5030154118 @default.
- W2767346422 hasAuthorship W2767346422A5072358589 @default.
- W2767346422 hasAuthorship W2767346422A5085489377 @default.
- W2767346422 hasConcept C41008148 @default.
- W2767346422 hasConceptScore W2767346422C41008148 @default.
- W2767346422 hasFunder F4320306076 @default.
- W2767346422 hasLocation W27673464221 @default.
- W2767346422 hasOpenAccess W2767346422 @default.
- W2767346422 hasPrimaryLocation W27673464221 @default.
- W2767346422 hasRelatedWork W2093578348 @default.
- W2767346422 hasRelatedWork W2130043461 @default.
- W2767346422 hasRelatedWork W2350741829 @default.
- W2767346422 hasRelatedWork W2358668433 @default.
- W2767346422 hasRelatedWork W2376932109 @default.
- W2767346422 hasRelatedWork W2382290278 @default.
- W2767346422 hasRelatedWork W2390279801 @default.
- W2767346422 hasRelatedWork W2748952813 @default.
- W2767346422 hasRelatedWork W2899084033 @default.
- W2767346422 hasRelatedWork W3004735627 @default.
- W2767346422 isParatext "false" @default.
- W2767346422 isRetracted "false" @default.
- W2767346422 magId "2767346422" @default.
- W2767346422 workType "article" @default.