Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767366875> ?p ?o ?g. }
- W2767366875 endingPage "213" @default.
- W2767366875 startingPage "198" @default.
- W2767366875 abstract "We propose a robust and efficient learning-based deformable model for segmenting regions of interest (ROIs) from structural MR brain images. Different from the conventional deformable-model-based methods that deform a shape model locally around the initialization location, we learn an image-based regressor to guide the deformable model to fit for the target ROI. Specifically, given any voxel in a new image, the image-based regressor can predict the displacement vector from this voxel towards the boundary of target ROI, which can be used to guide the deformable segmentation. By predicting the displacement vector maps for the whole image, our deformable model is able to use multiple non-boundary predictions to jointly determine and iteratively converge the initial shape model to the target ROI boundary, which is more robust to the local prediction error and initialization. In addition, by introducing the prior shape model, our segmentation avoids the isolated segmentations as often occurred in the previous multi-atlas-based methods. In order to learn an image-based regressor for displacement vector prediction, we adopt the following novel strategies in the learning procedure: (1) a joint classification and regression random forest is proposed to learn an image-based regressor together with an ROI classifier in a multi-task manner; (2) high-level context features are extracted from intermediate (estimated) displacement vector and classification maps to enforce the relationship between predicted displacement vectors at neighboring voxels. To validate our method, we compare it with the state-of-the-art multi-atlas-based methods and other learning-based methods on three public brain MR datasets. The results consistently show that our method is better in terms of both segmentation accuracy and computational efficiency." @default.
- W2767366875 created "2017-11-17" @default.
- W2767366875 creator A5000937401 @default.
- W2767366875 creator A5008205289 @default.
- W2767366875 creator A5018944119 @default.
- W2767366875 creator A5068139862 @default.
- W2767366875 creator A5070300188 @default.
- W2767366875 creator A5075338951 @default.
- W2767366875 creator A5076346519 @default.
- W2767366875 date "2018-01-01" @default.
- W2767366875 modified "2023-09-27" @default.
- W2767366875 title "Robust brain ROI segmentation by deformation regression and deformable shape model" @default.
- W2767366875 cites W1954335072 @default.
- W2767366875 cites W1969257438 @default.
- W2767366875 cites W1995708743 @default.
- W2767366875 cites W1999240723 @default.
- W2767366875 cites W2004293194 @default.
- W2767366875 cites W2006096283 @default.
- W2767366875 cites W2009621568 @default.
- W2767366875 cites W2010587020 @default.
- W2767366875 cites W2014105136 @default.
- W2767366875 cites W2018662705 @default.
- W2767366875 cites W2019219692 @default.
- W2767366875 cites W2019587683 @default.
- W2767366875 cites W2032377318 @default.
- W2767366875 cites W2035188186 @default.
- W2767366875 cites W2038952578 @default.
- W2767366875 cites W2049247209 @default.
- W2767366875 cites W2049546272 @default.
- W2767366875 cites W2054540100 @default.
- W2767366875 cites W2058046532 @default.
- W2767366875 cites W2069331971 @default.
- W2767366875 cites W2083099567 @default.
- W2767366875 cites W2104095591 @default.
- W2767366875 cites W2128806031 @default.
- W2767366875 cites W2129259959 @default.
- W2767366875 cites W2129965408 @default.
- W2767366875 cites W2131104747 @default.
- W2767366875 cites W2143973889 @default.
- W2767366875 cites W2148157540 @default.
- W2767366875 cites W2148347694 @default.
- W2767366875 cites W2149184914 @default.
- W2767366875 cites W2261118238 @default.
- W2767366875 cites W2301358467 @default.
- W2767366875 cites W2963881378 @default.
- W2767366875 cites W3104258355 @default.
- W2767366875 doi "https://doi.org/10.1016/j.media.2017.11.001" @default.
- W2767366875 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29149715" @default.
- W2767366875 hasPublicationYear "2018" @default.
- W2767366875 type Work @default.
- W2767366875 sameAs 2767366875 @default.
- W2767366875 citedByCount "23" @default.
- W2767366875 countsByYear W27673668752018 @default.
- W2767366875 countsByYear W27673668752019 @default.
- W2767366875 countsByYear W27673668752020 @default.
- W2767366875 countsByYear W27673668752021 @default.
- W2767366875 countsByYear W27673668752022 @default.
- W2767366875 countsByYear W27673668752023 @default.
- W2767366875 crossrefType "journal-article" @default.
- W2767366875 hasAuthorship W2767366875A5000937401 @default.
- W2767366875 hasAuthorship W2767366875A5008205289 @default.
- W2767366875 hasAuthorship W2767366875A5018944119 @default.
- W2767366875 hasAuthorship W2767366875A5068139862 @default.
- W2767366875 hasAuthorship W2767366875A5070300188 @default.
- W2767366875 hasAuthorship W2767366875A5075338951 @default.
- W2767366875 hasAuthorship W2767366875A5076346519 @default.
- W2767366875 hasConcept C114466953 @default.
- W2767366875 hasConcept C124504099 @default.
- W2767366875 hasConcept C129641003 @default.
- W2767366875 hasConcept C151730666 @default.
- W2767366875 hasConcept C153180895 @default.
- W2767366875 hasConcept C154945302 @default.
- W2767366875 hasConcept C199360897 @default.
- W2767366875 hasConcept C2776673561 @default.
- W2767366875 hasConcept C31972630 @default.
- W2767366875 hasConcept C41008148 @default.
- W2767366875 hasConcept C54170458 @default.
- W2767366875 hasConcept C86803240 @default.
- W2767366875 hasConcept C89600930 @default.
- W2767366875 hasConceptScore W2767366875C114466953 @default.
- W2767366875 hasConceptScore W2767366875C124504099 @default.
- W2767366875 hasConceptScore W2767366875C129641003 @default.
- W2767366875 hasConceptScore W2767366875C151730666 @default.
- W2767366875 hasConceptScore W2767366875C153180895 @default.
- W2767366875 hasConceptScore W2767366875C154945302 @default.
- W2767366875 hasConceptScore W2767366875C199360897 @default.
- W2767366875 hasConceptScore W2767366875C2776673561 @default.
- W2767366875 hasConceptScore W2767366875C31972630 @default.
- W2767366875 hasConceptScore W2767366875C41008148 @default.
- W2767366875 hasConceptScore W2767366875C54170458 @default.
- W2767366875 hasConceptScore W2767366875C86803240 @default.
- W2767366875 hasConceptScore W2767366875C89600930 @default.
- W2767366875 hasFunder F4320332161 @default.
- W2767366875 hasLocation W27673668751 @default.
- W2767366875 hasLocation W27673668752 @default.
- W2767366875 hasOpenAccess W2767366875 @default.
- W2767366875 hasPrimaryLocation W27673668751 @default.
- W2767366875 hasRelatedWork W1669643531 @default.