Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767373145> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2767373145 abstract "Framing Fluid Construction Grammar Vanessa Micelli (vanessa@csl.sony.fr) Sony Computer Science Laboratory Paris 6 Rue Amyot, 75005 Paris, France Remi van Trijp (remi@csl.sony.fr) Sony Computer Science Laboratory Paris 6 Rue Amyot, 75005 Paris, France Joachim De Beule (joachim@arti.vub.ac.be) VUB Artificial Intelligence Laboratory Vrije Universiteit Brussel Pleinlaan 2, 1050 Brussels, Belgium Abstract In this paper, we propose a concrete operationalization which incorporates data from the FrameNet database into Fluid Con- struction Grammar, currently the only computational imple- mentation of construction grammar that can achieve both pro- duction and parsing using the same set of constructions. As a proof of concept, we selected an annotated sentence from the FrameNet database and transcribed its frame annotation anal- ysis into an FCG grammar. The paper illustrates the proposed constructions and discusses the value and results of these for- malization efforts. Keywords: Fluid Construction Grammar; FrameNet; Frame Semantics; Grammar Formalism Introduction Construction Grammar (CG) and Frame Semantics (FS) are considered to be sister theories in cognitive linguistics. FS investigates the frames of semantic knowledge that a lan- guage user needs in order to produce and comprehend words successfully, whereas CG tries to describe the constructions (i.e. meaning-form mappings) of a language. However, even though many construction grammarians subscribe their work to FS, most analyses only focus on the “skeletal meanings” (Goldberg, 1995, p. 28) that underlie grammatical construc- tions, and leave the exact integration of FS and CG under- specified. This gap may cause inconsistencies in the develop- ment of both theories and leaves a lot of crucial issues unad- dressed within cognitive linguistics. In this paper, we therefore propose a concrete operational- ization that overcomes this problem by using data from the FrameNet project (Baker, Fillmore, & Lowe, 1998) and Fluid Construction Grammar (FCG) (De Beule & Steels, 2005; Steels & De Beule, 2006), a computational formalism that allows researchers to test their hypotheses for both produc- tion and parsing. More specifically, we focus on a hand-made example 1 that serves as a proof-of-concept for our approach, and we discuss possible research avenues for the future such as the automatic incorporation of FrameNet data into FCG. 1 Given the space limitations of this paper and the elaborate an- notation of the example sentence, it is impossible to show a com- plete trace of production or parsing. Interested readers can therefore check the complete and interactive demonstration of the example at www.fcg-net.org/framenet/. We believe that a computational formalization is a crucial aspect of empirical science because it makes the sometimes fuzzy aspects of linguistic theories explicit and because it re- veals consequences of a theory that would have otherwise been overlooked. This paper is structured as follows: in the next section, we briefly introduce the FrameNet project and Fluid Construc- tion Grammar and explain our motivations for coupling the two with each other. We then discuss the example sentence that we implemented and show what we had to add to its an- notation to arrive at an operational result. We then look at some of the lexical and grammatical constructions that we implemented and how they are processed by FCG. Finally, we discuss the obtained results and insights and we briefly touch upon future efforts. Tying the knot between FrameNet and FCG Since Construction Grammar and Frame Semantics are both based on the same theoretical foundations, it is only natural to investigate how their existing implementations could possibly profit from each other and what would be the best and most advantageous way of doing so. In this section, we briefly in- troduce FrameNet and FCG, and we motivate why the com- bination of both forms a powerful tool for investigating both the semantic and grammatical properties of constructions. FrameNet The FrameNet database (Baker et al., 1998) presents a huge online database containing more than 10.000 English lexi- cal units (LUs) and, more recently, similar efforts for several other languages such as German and Japanese. All lexical units are annotated with their semantic frames based on ex- ample sentences in which the respective frames and frame elements are marked. The corpus-oriented approach of the FrameNet project makes that it is tightly connected to empiri- cal observations. Unfortunately, no computational implemen- tation exists of how these annotated frames can be processed in either production or parsing. Fluid Construction Grammar (FCG) Fluid Construction Grammar (De Beule & Steels, 2005; Steels & De Beule, 2006) is a fully operational grammar for-" @default.
- W2767373145 created "2017-11-17" @default.
- W2767373145 creator A5054577448 @default.
- W2767373145 creator A5058690054 @default.
- W2767373145 creator A5079183039 @default.
- W2767373145 date "2009-01-01" @default.
- W2767373145 modified "2023-09-28" @default.
- W2767373145 title "Framing Fluid Construction Grammar" @default.
- W2767373145 cites W1486572223 @default.
- W2767373145 cites W1533795881 @default.
- W2767373145 cites W1546150263 @default.
- W2767373145 cites W1555990983 @default.
- W2767373145 cites W1558866924 @default.
- W2767373145 cites W176170200 @default.
- W2767373145 cites W1984650769 @default.
- W2767373145 cites W2008270790 @default.
- W2767373145 cites W2115792525 @default.
- W2767373145 cites W2129085023 @default.
- W2767373145 cites W2331965210 @default.
- W2767373145 cites W2504764078 @default.
- W2767373145 cites W3133182998 @default.
- W2767373145 hasPublicationYear "2009" @default.
- W2767373145 type Work @default.
- W2767373145 sameAs 2767373145 @default.
- W2767373145 citedByCount "6" @default.
- W2767373145 countsByYear W27673731452013 @default.
- W2767373145 countsByYear W27673731452014 @default.
- W2767373145 crossrefType "journal-article" @default.
- W2767373145 hasAuthorship W2767373145A5054577448 @default.
- W2767373145 hasAuthorship W2767373145A5058690054 @default.
- W2767373145 hasAuthorship W2767373145A5079183039 @default.
- W2767373145 hasConcept C138885662 @default.
- W2767373145 hasConcept C152862876 @default.
- W2767373145 hasConcept C154945302 @default.
- W2767373145 hasConcept C185754541 @default.
- W2767373145 hasConcept C186644900 @default.
- W2767373145 hasConcept C199360897 @default.
- W2767373145 hasConcept C204321447 @default.
- W2767373145 hasConcept C26022165 @default.
- W2767373145 hasConcept C2777511649 @default.
- W2767373145 hasConcept C39890363 @default.
- W2767373145 hasConcept C41008148 @default.
- W2767373145 hasConcept C41895202 @default.
- W2767373145 hasConcept C69298649 @default.
- W2767373145 hasConceptScore W2767373145C138885662 @default.
- W2767373145 hasConceptScore W2767373145C152862876 @default.
- W2767373145 hasConceptScore W2767373145C154945302 @default.
- W2767373145 hasConceptScore W2767373145C185754541 @default.
- W2767373145 hasConceptScore W2767373145C186644900 @default.
- W2767373145 hasConceptScore W2767373145C199360897 @default.
- W2767373145 hasConceptScore W2767373145C204321447 @default.
- W2767373145 hasConceptScore W2767373145C26022165 @default.
- W2767373145 hasConceptScore W2767373145C2777511649 @default.
- W2767373145 hasConceptScore W2767373145C39890363 @default.
- W2767373145 hasConceptScore W2767373145C41008148 @default.
- W2767373145 hasConceptScore W2767373145C41895202 @default.
- W2767373145 hasConceptScore W2767373145C69298649 @default.
- W2767373145 hasIssue "31" @default.
- W2767373145 hasLocation W27673731451 @default.
- W2767373145 hasOpenAccess W2767373145 @default.
- W2767373145 hasPrimaryLocation W27673731451 @default.
- W2767373145 hasRelatedWork W1607777110 @default.
- W2767373145 hasRelatedWork W166162739 @default.
- W2767373145 hasRelatedWork W2027178601 @default.
- W2767373145 hasRelatedWork W2048600042 @default.
- W2767373145 hasRelatedWork W2270395140 @default.
- W2767373145 hasRelatedWork W2294425696 @default.
- W2767373145 hasRelatedWork W2397078990 @default.
- W2767373145 hasRelatedWork W2401812238 @default.
- W2767373145 hasRelatedWork W2476679100 @default.
- W2767373145 hasRelatedWork W2486388013 @default.
- W2767373145 hasRelatedWork W2548406342 @default.
- W2767373145 hasRelatedWork W2742646263 @default.
- W2767373145 hasRelatedWork W2771102744 @default.
- W2767373145 hasRelatedWork W2779945879 @default.
- W2767373145 hasRelatedWork W2803623263 @default.
- W2767373145 hasRelatedWork W2884709258 @default.
- W2767373145 hasRelatedWork W2963097991 @default.
- W2767373145 hasRelatedWork W3011800382 @default.
- W2767373145 hasRelatedWork W46195346 @default.
- W2767373145 hasRelatedWork W581619907 @default.
- W2767373145 hasVolume "31" @default.
- W2767373145 isParatext "false" @default.
- W2767373145 isRetracted "false" @default.
- W2767373145 magId "2767373145" @default.
- W2767373145 workType "article" @default.