Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767375627> ?p ?o ?g. }
- W2767375627 endingPage "13" @default.
- W2767375627 startingPage "1" @default.
- W2767375627 abstract "Recently much research has been conducted towards finding fast and accurate pattern classifiers applied to Structural Health Monitoring (SHM) systems. In this way, researchers have proposed new methods based on Fuzzy ARTMAP Network (FAN) in order to enhance the success rate for structural damage classification applied to SHM applications. Conversely, the performance of methods based on FAN is very dependent of its setup parameters. In several SHM approaches in the literature, authors have proposed selecting those parameters by using several attempts (empirical and manual selection) and keeping them fixed for all cases in the resulting analysis, hampering the success rate of the neural network. To overcoming that, this paper introduces a new strategy for enhancement of structural damage identification focusing on supervised learning of FAN by using Particle Swarm Optimization (PSO) for selecting optimal setup parameters automatically for the FAN algorithm. Also, the Kappa coefficient is used as an objective function to be maximized through the PSO algorithm. As a result, the optimum setup parameters improved the success rate while the damage identification is being carried out. Indeed this proposed method is certainly very promising and constitutes a novelty. The proposed method achieves more than 75% hit rate that is significantly higher than the state-of-the-art approaches as presented in this paper. Furthermore, this approach yields a 20% improvement when considering the worst case scenario. Hence, this approach shows a practical application of expert and intelligent systems applied to damage identification in SHM systems. To conclude, the proposed approach successfully identifies structural damage with accuracy and efficiency." @default.
- W2767375627 created "2017-11-17" @default.
- W2767375627 creator A5007305559 @default.
- W2767375627 creator A5062420173 @default.
- W2767375627 creator A5072823230 @default.
- W2767375627 creator A5084591022 @default.
- W2767375627 date "2018-04-01" @default.
- W2767375627 modified "2023-10-18" @default.
- W2767375627 title "Kappa-PSO-FAN based method for damage identification on composite structural health monitoring" @default.
- W2767375627 cites W1605959661 @default.
- W2767375627 cites W1893072774 @default.
- W2767375627 cites W1972388228 @default.
- W2767375627 cites W1980588702 @default.
- W2767375627 cites W1985110503 @default.
- W2767375627 cites W1987778624 @default.
- W2767375627 cites W1987983067 @default.
- W2767375627 cites W1989832318 @default.
- W2767375627 cites W2012611887 @default.
- W2767375627 cites W2013088133 @default.
- W2767375627 cites W2013671492 @default.
- W2767375627 cites W2014065015 @default.
- W2767375627 cites W2017325890 @default.
- W2767375627 cites W2017713683 @default.
- W2767375627 cites W2018852350 @default.
- W2767375627 cites W2034544249 @default.
- W2767375627 cites W2050909855 @default.
- W2767375627 cites W2053154970 @default.
- W2767375627 cites W2060866052 @default.
- W2767375627 cites W2066764725 @default.
- W2767375627 cites W2082904590 @default.
- W2767375627 cites W2088393974 @default.
- W2767375627 cites W2096213078 @default.
- W2767375627 cites W2114051039 @default.
- W2767375627 cites W2122912160 @default.
- W2767375627 cites W2133152047 @default.
- W2767375627 cites W2137987010 @default.
- W2767375627 cites W2142116925 @default.
- W2767375627 cites W2166280719 @default.
- W2767375627 cites W2406123037 @default.
- W2767375627 cites W2474202004 @default.
- W2767375627 cites W2474317505 @default.
- W2767375627 cites W2562219162 @default.
- W2767375627 doi "https://doi.org/10.1016/j.eswa.2017.11.022" @default.
- W2767375627 hasPublicationYear "2018" @default.
- W2767375627 type Work @default.
- W2767375627 sameAs 2767375627 @default.
- W2767375627 citedByCount "14" @default.
- W2767375627 countsByYear W27673756272018 @default.
- W2767375627 countsByYear W27673756272019 @default.
- W2767375627 countsByYear W27673756272020 @default.
- W2767375627 countsByYear W27673756272021 @default.
- W2767375627 countsByYear W27673756272022 @default.
- W2767375627 countsByYear W27673756272023 @default.
- W2767375627 crossrefType "journal-article" @default.
- W2767375627 hasAuthorship W2767375627A5007305559 @default.
- W2767375627 hasAuthorship W2767375627A5062420173 @default.
- W2767375627 hasAuthorship W2767375627A5072823230 @default.
- W2767375627 hasAuthorship W2767375627A5084591022 @default.
- W2767375627 hasBestOaLocation W27673756272 @default.
- W2767375627 hasConcept C116834253 @default.
- W2767375627 hasConcept C119857082 @default.
- W2767375627 hasConcept C124101348 @default.
- W2767375627 hasConcept C127413603 @default.
- W2767375627 hasConcept C138885662 @default.
- W2767375627 hasConcept C154945302 @default.
- W2767375627 hasConcept C27206212 @default.
- W2767375627 hasConcept C2776247918 @default.
- W2767375627 hasConcept C2778738651 @default.
- W2767375627 hasConcept C2778924833 @default.
- W2767375627 hasConcept C41008148 @default.
- W2767375627 hasConcept C50644808 @default.
- W2767375627 hasConcept C58166 @default.
- W2767375627 hasConcept C59822182 @default.
- W2767375627 hasConcept C66938386 @default.
- W2767375627 hasConcept C85617194 @default.
- W2767375627 hasConcept C86803240 @default.
- W2767375627 hasConceptScore W2767375627C116834253 @default.
- W2767375627 hasConceptScore W2767375627C119857082 @default.
- W2767375627 hasConceptScore W2767375627C124101348 @default.
- W2767375627 hasConceptScore W2767375627C127413603 @default.
- W2767375627 hasConceptScore W2767375627C138885662 @default.
- W2767375627 hasConceptScore W2767375627C154945302 @default.
- W2767375627 hasConceptScore W2767375627C27206212 @default.
- W2767375627 hasConceptScore W2767375627C2776247918 @default.
- W2767375627 hasConceptScore W2767375627C2778738651 @default.
- W2767375627 hasConceptScore W2767375627C2778924833 @default.
- W2767375627 hasConceptScore W2767375627C41008148 @default.
- W2767375627 hasConceptScore W2767375627C50644808 @default.
- W2767375627 hasConceptScore W2767375627C58166 @default.
- W2767375627 hasConceptScore W2767375627C59822182 @default.
- W2767375627 hasConceptScore W2767375627C66938386 @default.
- W2767375627 hasConceptScore W2767375627C85617194 @default.
- W2767375627 hasConceptScore W2767375627C86803240 @default.
- W2767375627 hasFunder F4320322025 @default.
- W2767375627 hasLocation W27673756271 @default.
- W2767375627 hasLocation W27673756272 @default.
- W2767375627 hasOpenAccess W2767375627 @default.
- W2767375627 hasPrimaryLocation W27673756271 @default.