Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767404761> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2767404761 abstract "Graph clustering aims to discovercommunity structures in networks, the task being fundamentally challenging mainly because the topology structure and the content of the graphs are difficult to represent for clustering analysis. Recently, graph clustering has moved from traditional shallow methods to deep learning approaches, thanks to the unique feature representation learning capability of deep learning. However, existing deep approaches for graph clustering can only exploit the structure information, while ignoring the content information associated with the nodes in a graph. In this paper, we propose a novel marginalized graph autoencoder (MGAE) algorithm for graph clustering. The key innovation of MGAE is that it advances the autoencoder to the graph domain, so graph representation learning can be carried out not only in a purely unsupervised setting by leveraging structure and content information, it can also be stacked in a deep fashion to learn effective representation. From a technical viewpoint, we propose a marginalized graph convolutional network to corrupt network node content, allowing node content to interact with network features, and marginalizes the corrupted features in a graph autoencoder context to learn graph feature representations. The learned features are fed into the spectral clustering algorithm for graph clustering. Experimental results on benchmark datasets demonstrate the superior performance of MGAE, compared to numerous baselines." @default.
- W2767404761 created "2017-11-17" @default.
- W2767404761 creator A5008056593 @default.
- W2767404761 creator A5030968272 @default.
- W2767404761 creator A5057139422 @default.
- W2767404761 creator A5059227406 @default.
- W2767404761 creator A5084641325 @default.
- W2767404761 date "2017-11-06" @default.
- W2767404761 modified "2023-10-11" @default.
- W2767404761 title "MGAE" @default.
- W2767404761 cites W1971421925 @default.
- W2767404761 cites W2012662151 @default.
- W2767404761 cites W2025768430 @default.
- W2767404761 cites W2050239729 @default.
- W2767404761 cites W2058240487 @default.
- W2767404761 cites W2075150581 @default.
- W2767404761 cites W2107793528 @default.
- W2767404761 cites W2139694940 @default.
- W2767404761 cites W2144354855 @default.
- W2767404761 cites W2147768505 @default.
- W2767404761 cites W2151936673 @default.
- W2767404761 cites W2158787690 @default.
- W2767404761 cites W2165515835 @default.
- W2767404761 cites W2166914830 @default.
- W2767404761 cites W2167686991 @default.
- W2767404761 cites W2249925396 @default.
- W2767404761 cites W2258064579 @default.
- W2767404761 cites W2323770312 @default.
- W2767404761 cites W2343790552 @default.
- W2767404761 cites W2405933695 @default.
- W2767404761 cites W2517742033 @default.
- W2767404761 cites W2554327883 @default.
- W2767404761 cites W2585247128 @default.
- W2767404761 cites W2613148767 @default.
- W2767404761 cites W2735534957 @default.
- W2767404761 cites W3104097132 @default.
- W2767404761 cites W3105705953 @default.
- W2767404761 doi "https://doi.org/10.1145/3132847.3132967" @default.
- W2767404761 hasPublicationYear "2017" @default.
- W2767404761 type Work @default.
- W2767404761 sameAs 2767404761 @default.
- W2767404761 citedByCount "200" @default.
- W2767404761 countsByYear W27674047612018 @default.
- W2767404761 countsByYear W27674047612019 @default.
- W2767404761 countsByYear W27674047612020 @default.
- W2767404761 countsByYear W27674047612021 @default.
- W2767404761 countsByYear W27674047612022 @default.
- W2767404761 countsByYear W27674047612023 @default.
- W2767404761 crossrefType "proceedings-article" @default.
- W2767404761 hasAuthorship W2767404761A5008056593 @default.
- W2767404761 hasAuthorship W2767404761A5030968272 @default.
- W2767404761 hasAuthorship W2767404761A5057139422 @default.
- W2767404761 hasAuthorship W2767404761A5059227406 @default.
- W2767404761 hasAuthorship W2767404761A5084641325 @default.
- W2767404761 hasConcept C101738243 @default.
- W2767404761 hasConcept C108583219 @default.
- W2767404761 hasConcept C132525143 @default.
- W2767404761 hasConcept C154945302 @default.
- W2767404761 hasConcept C165696696 @default.
- W2767404761 hasConcept C22047676 @default.
- W2767404761 hasConcept C38652104 @default.
- W2767404761 hasConcept C41008148 @default.
- W2767404761 hasConcept C59404180 @default.
- W2767404761 hasConcept C73555534 @default.
- W2767404761 hasConcept C80444323 @default.
- W2767404761 hasConceptScore W2767404761C101738243 @default.
- W2767404761 hasConceptScore W2767404761C108583219 @default.
- W2767404761 hasConceptScore W2767404761C132525143 @default.
- W2767404761 hasConceptScore W2767404761C154945302 @default.
- W2767404761 hasConceptScore W2767404761C165696696 @default.
- W2767404761 hasConceptScore W2767404761C22047676 @default.
- W2767404761 hasConceptScore W2767404761C38652104 @default.
- W2767404761 hasConceptScore W2767404761C41008148 @default.
- W2767404761 hasConceptScore W2767404761C59404180 @default.
- W2767404761 hasConceptScore W2767404761C73555534 @default.
- W2767404761 hasConceptScore W2767404761C80444323 @default.
- W2767404761 hasLocation W27674047611 @default.
- W2767404761 hasOpenAccess W2767404761 @default.
- W2767404761 hasPrimaryLocation W27674047611 @default.
- W2767404761 hasRelatedWork W2669956259 @default.
- W2767404761 hasRelatedWork W2891059443 @default.
- W2767404761 hasRelatedWork W2983142544 @default.
- W2767404761 hasRelatedWork W3208386644 @default.
- W2767404761 hasRelatedWork W3208888551 @default.
- W2767404761 hasRelatedWork W4220682630 @default.
- W2767404761 hasRelatedWork W4249005693 @default.
- W2767404761 hasRelatedWork W4281663961 @default.
- W2767404761 hasRelatedWork W4313561566 @default.
- W2767404761 hasRelatedWork W4365790226 @default.
- W2767404761 isParatext "false" @default.
- W2767404761 isRetracted "false" @default.
- W2767404761 magId "2767404761" @default.
- W2767404761 workType "article" @default.