Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767418305> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2767418305 abstract "Images play an increasingly important role in many fields of science and its applications. Biology is one of the best examples of fields that have come to depend heavily upon images for progress. Biological images contain a lot of objects and patterns, which may contain information about underlying mechanism in biology. Image analysis provides a way to extract and quantify objects and patterns in image data and obtain answers to meaningful biological questions. This dissertation focuses on image analysis for biological applications in segmentation, registration and count estimation problems.Proper understanding of the causal relationship between cell growth patterns and gene expression dynamics is one of the major topics of interest in developmental biology. Information such as rates and patterns of cell expansion play a critical role in explaining cell growth and deformation dynamics. In our research, we focus on studying the developing plant with the goal of obtaining very accurate cell development statistics. The image processing and analysis framework for gathering the cell growth and division statistics comprises of three main parts - image registration, cell segmentation and cell tracking. Without proper segmentation and registration the subsequent parts in the image analysis system would fail. This dissertation addresses both these problems.To provide proper segmentation of cells we propose a single framework that entails segmentation and tracking of plant cell images. We show how to optimally choose the parameters in the watershed segmentation algorithm for high quality segmentation results. To register image datasets we have provided an optimization based framework to select the best image slice correspondence from consecutive image stacks by using the tissue characteristics in images. Also, we have presented a novel landmark selection method where we use characteristics of neighboring cells as unique features. To evaluate both our frameworks, cell correspondences across multiple slices andtime windows are fused to obtain cell lineages and compared to recent results in this area. Experiments on multiple plant datasets show the proposed algorithms provide significantly longer, more accurate cell lineages and more comprehensive identification of cell divisions.Another contribution of this work is in count estimation. Mosquitoesand other blood-feeding insects transmit deadly diseases to hundreds of millions of people, causing severe suffering and more than a million deaths each year. Female mosquitoes that transmit deadly diseases locate human hosts by detecting exhaled CO2 and skin odor. Quantitative analysis of a mosquito’s attraction to different odors is very important. It can lead to discoveries about mosquitoes that could have a big impact on human health. We present a method to automate mosquito counting in videos. The current manual analysis on these videos is not sufficient for quantitative analysis and available object counting approaches do not work well. We propose an automated mosquito counting technique which uses the softmax classifier with a sliding windowtechnique to detect the mosquitoes in the separated region of interest, where the over-detections resulting from the sliding window technique are eliminated by non-maximum suppression method. The final counts of the mosquito detections represent the desired mosquito counts in images. The proposed automated method has been applied on different datasets and showed very good and consistent counts of mosquitoes." @default.
- W2767418305 created "2017-11-17" @default.
- W2767418305 creator A5074474110 @default.
- W2767418305 date "2016-01-01" @default.
- W2767418305 modified "2023-09-27" @default.
- W2767418305 title "Bio-Image Analysis for Understanding Plant Development and Mosquito Behaviors" @default.
- W2767418305 hasPublicationYear "2016" @default.
- W2767418305 type Work @default.
- W2767418305 sameAs 2767418305 @default.
- W2767418305 citedByCount "0" @default.
- W2767418305 crossrefType "journal-article" @default.
- W2767418305 hasAuthorship W2767418305A5074474110 @default.
- W2767418305 hasConcept C115961682 @default.
- W2767418305 hasConcept C120665830 @default.
- W2767418305 hasConcept C121332964 @default.
- W2767418305 hasConcept C124504099 @default.
- W2767418305 hasConcept C153180895 @default.
- W2767418305 hasConcept C154945302 @default.
- W2767418305 hasConcept C192209626 @default.
- W2767418305 hasConcept C25694479 @default.
- W2767418305 hasConcept C31972630 @default.
- W2767418305 hasConcept C41008148 @default.
- W2767418305 hasConcept C65885262 @default.
- W2767418305 hasConcept C89600930 @default.
- W2767418305 hasConcept C9417928 @default.
- W2767418305 hasConceptScore W2767418305C115961682 @default.
- W2767418305 hasConceptScore W2767418305C120665830 @default.
- W2767418305 hasConceptScore W2767418305C121332964 @default.
- W2767418305 hasConceptScore W2767418305C124504099 @default.
- W2767418305 hasConceptScore W2767418305C153180895 @default.
- W2767418305 hasConceptScore W2767418305C154945302 @default.
- W2767418305 hasConceptScore W2767418305C192209626 @default.
- W2767418305 hasConceptScore W2767418305C25694479 @default.
- W2767418305 hasConceptScore W2767418305C31972630 @default.
- W2767418305 hasConceptScore W2767418305C41008148 @default.
- W2767418305 hasConceptScore W2767418305C65885262 @default.
- W2767418305 hasConceptScore W2767418305C89600930 @default.
- W2767418305 hasConceptScore W2767418305C9417928 @default.
- W2767418305 hasLocation W27674183051 @default.
- W2767418305 hasOpenAccess W2767418305 @default.
- W2767418305 hasPrimaryLocation W27674183051 @default.
- W2767418305 hasRelatedWork W131537950 @default.
- W2767418305 hasRelatedWork W1596327196 @default.
- W2767418305 hasRelatedWork W1812070052 @default.
- W2767418305 hasRelatedWork W1986016391 @default.
- W2767418305 hasRelatedWork W2069797029 @default.
- W2767418305 hasRelatedWork W2102527449 @default.
- W2767418305 hasRelatedWork W2327105008 @default.
- W2767418305 hasRelatedWork W2598858566 @default.
- W2767418305 hasRelatedWork W2599801749 @default.
- W2767418305 hasRelatedWork W2620778761 @default.
- W2767418305 hasRelatedWork W2766758577 @default.
- W2767418305 hasRelatedWork W2770489607 @default.
- W2767418305 hasRelatedWork W2802209142 @default.
- W2767418305 hasRelatedWork W2900490697 @default.
- W2767418305 hasRelatedWork W2946088713 @default.
- W2767418305 hasRelatedWork W2968516046 @default.
- W2767418305 hasRelatedWork W2968867485 @default.
- W2767418305 hasRelatedWork W3133788218 @default.
- W2767418305 hasRelatedWork W3179309198 @default.
- W2767418305 hasRelatedWork W3210936408 @default.
- W2767418305 isParatext "false" @default.
- W2767418305 isRetracted "false" @default.
- W2767418305 magId "2767418305" @default.
- W2767418305 workType "article" @default.