Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767432956> ?p ?o ?g. }
- W2767432956 endingPage "2480" @default.
- W2767432956 startingPage "2465" @default.
- W2767432956 abstract "This paper is concerned with the problem of continuous-time nonlinear filtering of stochastic processes evolving on connected Riemannian manifolds without boundary. The main contribution of this paper is to derive the feedback particle filter (FPF) algorithm for this problem. In its general form, the FPF is shown to provide an intrinsic description of the filter that automatically satisfies the geometric constraints of the manifold. The particle dynamics are encapsulated in a Stratonovich stochastic differential equation that retains the feedback structure of the original (Euclidean) FPF. The implementation of the filter requires a solution of a Poisson equation on the manifold, and a numerical algorithm is described for this purpose. For the special case when the manifold is a matrix Lie group, explicit formulae for the filter are derived, using the matrix coordinates. Filters for two example problems are presented: the attitude estimation problem on SO(3) and the robot localization problem in SE(3). Comparisons are also provided between the FPF and popular algorithms for attitude estimation, namely the multiplicative extended Kalman filter (EKF), the invariant EKF, the unscented quaternion estimator, the invariant ensemble Kalman filter, and the bootstrap particle filter. Numerical simulations are presented to illustrate these comparisons." @default.
- W2767432956 created "2017-11-17" @default.
- W2767432956 creator A5035589000 @default.
- W2767432956 creator A5081314418 @default.
- W2767432956 creator A5088141052 @default.
- W2767432956 date "2018-08-01" @default.
- W2767432956 modified "2023-09-28" @default.
- W2767432956 title "Feedback Particle Filter on Riemannian Manifolds and Matrix Lie Groups" @default.
- W2767432956 cites W1557324374 @default.
- W2767432956 cites W1852328762 @default.
- W2767432956 cites W1966219535 @default.
- W2767432956 cites W1973724089 @default.
- W2767432956 cites W1992747726 @default.
- W2767432956 cites W1995201049 @default.
- W2767432956 cites W2007935444 @default.
- W2767432956 cites W2009131459 @default.
- W2767432956 cites W2011586160 @default.
- W2767432956 cites W2018655096 @default.
- W2767432956 cites W2022313257 @default.
- W2767432956 cites W2023927582 @default.
- W2767432956 cites W2026891225 @default.
- W2767432956 cites W2036837097 @default.
- W2767432956 cites W2041339162 @default.
- W2767432956 cites W2044341216 @default.
- W2767432956 cites W2046120048 @default.
- W2767432956 cites W2049046732 @default.
- W2767432956 cites W2055631888 @default.
- W2767432956 cites W2056298239 @default.
- W2767432956 cites W2058490559 @default.
- W2767432956 cites W2062494993 @default.
- W2767432956 cites W2064179240 @default.
- W2767432956 cites W2068318759 @default.
- W2767432956 cites W2079249362 @default.
- W2767432956 cites W2084406883 @default.
- W2767432956 cites W2090347046 @default.
- W2767432956 cites W2094201513 @default.
- W2767432956 cites W2107929215 @default.
- W2767432956 cites W2117102490 @default.
- W2767432956 cites W2117730228 @default.
- W2767432956 cites W2125691646 @default.
- W2767432956 cites W2131889108 @default.
- W2767432956 cites W2132240870 @default.
- W2767432956 cites W2138478117 @default.
- W2767432956 cites W2144707556 @default.
- W2767432956 cites W2157357823 @default.
- W2767432956 cites W2157502374 @default.
- W2767432956 cites W2166957155 @default.
- W2767432956 cites W2169772828 @default.
- W2767432956 cites W2244651041 @default.
- W2767432956 cites W2245742937 @default.
- W2767432956 cites W2291672095 @default.
- W2767432956 cites W2292394767 @default.
- W2767432956 cites W2292586222 @default.
- W2767432956 cites W2332299382 @default.
- W2767432956 cites W2408175243 @default.
- W2767432956 cites W2515882314 @default.
- W2767432956 cites W2543420359 @default.
- W2767432956 cites W2562838652 @default.
- W2767432956 cites W2569171899 @default.
- W2767432956 cites W2570176783 @default.
- W2767432956 cites W2964060765 @default.
- W2767432956 cites W2964079172 @default.
- W2767432956 cites W4206033904 @default.
- W2767432956 cites W4213367101 @default.
- W2767432956 cites W4243055393 @default.
- W2767432956 cites W4246449400 @default.
- W2767432956 cites W2314388653 @default.
- W2767432956 cites W2477335885 @default.
- W2767432956 doi "https://doi.org/10.1109/tac.2017.2771336" @default.
- W2767432956 hasPublicationYear "2018" @default.
- W2767432956 type Work @default.
- W2767432956 sameAs 2767432956 @default.
- W2767432956 citedByCount "24" @default.
- W2767432956 countsByYear W27674329562019 @default.
- W2767432956 countsByYear W27674329562020 @default.
- W2767432956 countsByYear W27674329562021 @default.
- W2767432956 countsByYear W27674329562022 @default.
- W2767432956 countsByYear W27674329562023 @default.
- W2767432956 crossrefType "journal-article" @default.
- W2767432956 hasAuthorship W2767432956A5035589000 @default.
- W2767432956 hasAuthorship W2767432956A5081314418 @default.
- W2767432956 hasAuthorship W2767432956A5088141052 @default.
- W2767432956 hasConcept C105795698 @default.
- W2767432956 hasConcept C134306372 @default.
- W2767432956 hasConcept C154945302 @default.
- W2767432956 hasConcept C157286648 @default.
- W2767432956 hasConcept C187915474 @default.
- W2767432956 hasConcept C202444582 @default.
- W2767432956 hasConcept C20483540 @default.
- W2767432956 hasConcept C206833254 @default.
- W2767432956 hasConcept C2775924081 @default.
- W2767432956 hasConcept C2779593128 @default.
- W2767432956 hasConcept C28826006 @default.
- W2767432956 hasConcept C33923547 @default.
- W2767432956 hasConcept C41008148 @default.
- W2767432956 hasConcept C41614226 @default.
- W2767432956 hasConcept C47446073 @default.
- W2767432956 hasConcept C79334102 @default.