Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767459365> ?p ?o ?g. }
- W2767459365 endingPage "563" @default.
- W2767459365 startingPage "545" @default.
- W2767459365 abstract "Abstract Person detection from vehicles has made rapid progress recently with the advent of multiple high‐quality datasets of urban and highway driving, yet no large‐scale benchmark is available for the same problem in off‐road or agricultural environments. Here we present the National Robotics Engineering Center (NREC) Agricultural Person‐Detection Dataset to spur research in these environments. It consists of labeled stereo video of people in orange and apple orchards taken from two perception platforms (a tractor and a pickup truck), along with vehicle position data from Real Time Kinetic (RTK) GPS. We define a benchmark on part of the dataset that combines a total of 76k labeled person images and 19k sampled person‐free images. The dataset highlights several key challenges of the domain, including varying environment, substantial occlusion by vegetation, people in motion and in nonstandard poses, and people seen from a variety of distances; metadata are included to allow targeted evaluation of each of these effects. Finally, we present baseline detection performance results for three leading approaches from urban pedestrian detection and our own convolutional neural network approach that benefits from the incorporation of additional image context. We show that the success of existing approaches on urban data does not transfer directly to this domain." @default.
- W2767459365 created "2017-11-17" @default.
- W2767459365 creator A5004353237 @default.
- W2767459365 creator A5011784497 @default.
- W2767459365 creator A5016391243 @default.
- W2767459365 creator A5035658063 @default.
- W2767459365 creator A5040620353 @default.
- W2767459365 creator A5050535279 @default.
- W2767459365 creator A5057557951 @default.
- W2767459365 creator A5071554286 @default.
- W2767459365 date "2017-11-06" @default.
- W2767459365 modified "2023-10-06" @default.
- W2767459365 title "Comparing apples and oranges: Off‐road pedestrian detection on the National Robotics Engineering Center agricultural person‐detection dataset" @default.
- W2767459365 cites W1506491340 @default.
- W2767459365 cites W1536680647 @default.
- W2767459365 cites W1590105591 @default.
- W2767459365 cites W1861492603 @default.
- W2767459365 cites W1903029394 @default.
- W2767459365 cites W1903127635 @default.
- W2767459365 cites W1948751323 @default.
- W2767459365 cites W2012605944 @default.
- W2767459365 cites W2024368999 @default.
- W2767459365 cites W2031342017 @default.
- W2767459365 cites W2031454541 @default.
- W2767459365 cites W2031489346 @default.
- W2767459365 cites W2034377167 @default.
- W2767459365 cites W2048344996 @default.
- W2767459365 cites W2088393690 @default.
- W2767459365 cites W2099318124 @default.
- W2767459365 cites W2102605133 @default.
- W2767459365 cites W2103018059 @default.
- W2767459365 cites W2104974755 @default.
- W2767459365 cites W2108598243 @default.
- W2767459365 cites W2115579991 @default.
- W2767459365 cites W2115733720 @default.
- W2767459365 cites W2117687030 @default.
- W2767459365 cites W2119112357 @default.
- W2767459365 cites W2134974756 @default.
- W2767459365 cites W2147253850 @default.
- W2767459365 cites W2149489787 @default.
- W2767459365 cites W2163272476 @default.
- W2767459365 cites W2166623283 @default.
- W2767459365 cites W2167049458 @default.
- W2767459365 cites W2168356304 @default.
- W2767459365 cites W2168403590 @default.
- W2767459365 cites W2334562993 @default.
- W2767459365 cites W2490270993 @default.
- W2767459365 cites W2497039038 @default.
- W2767459365 cites W2919115771 @default.
- W2767459365 cites W2963121817 @default.
- W2767459365 cites W647014239 @default.
- W2767459365 doi "https://doi.org/10.1002/rob.21760" @default.
- W2767459365 hasPublicationYear "2017" @default.
- W2767459365 type Work @default.
- W2767459365 sameAs 2767459365 @default.
- W2767459365 citedByCount "19" @default.
- W2767459365 countsByYear W27674593652019 @default.
- W2767459365 countsByYear W27674593652020 @default.
- W2767459365 countsByYear W27674593652021 @default.
- W2767459365 countsByYear W27674593652022 @default.
- W2767459365 countsByYear W27674593652023 @default.
- W2767459365 crossrefType "journal-article" @default.
- W2767459365 hasAuthorship W2767459365A5004353237 @default.
- W2767459365 hasAuthorship W2767459365A5011784497 @default.
- W2767459365 hasAuthorship W2767459365A5016391243 @default.
- W2767459365 hasAuthorship W2767459365A5035658063 @default.
- W2767459365 hasAuthorship W2767459365A5040620353 @default.
- W2767459365 hasAuthorship W2767459365A5050535279 @default.
- W2767459365 hasAuthorship W2767459365A5057557951 @default.
- W2767459365 hasAuthorship W2767459365A5071554286 @default.
- W2767459365 hasConcept C119857082 @default.
- W2767459365 hasConcept C127413603 @default.
- W2767459365 hasConcept C154945302 @default.
- W2767459365 hasConcept C185798385 @default.
- W2767459365 hasConcept C205649164 @default.
- W2767459365 hasConcept C22212356 @default.
- W2767459365 hasConcept C2777113093 @default.
- W2767459365 hasConcept C31972630 @default.
- W2767459365 hasConcept C34413123 @default.
- W2767459365 hasConcept C41008148 @default.
- W2767459365 hasConcept C58640448 @default.
- W2767459365 hasConcept C81363708 @default.
- W2767459365 hasConcept C90509273 @default.
- W2767459365 hasConceptScore W2767459365C119857082 @default.
- W2767459365 hasConceptScore W2767459365C127413603 @default.
- W2767459365 hasConceptScore W2767459365C154945302 @default.
- W2767459365 hasConceptScore W2767459365C185798385 @default.
- W2767459365 hasConceptScore W2767459365C205649164 @default.
- W2767459365 hasConceptScore W2767459365C22212356 @default.
- W2767459365 hasConceptScore W2767459365C2777113093 @default.
- W2767459365 hasConceptScore W2767459365C31972630 @default.
- W2767459365 hasConceptScore W2767459365C34413123 @default.
- W2767459365 hasConceptScore W2767459365C41008148 @default.
- W2767459365 hasConceptScore W2767459365C58640448 @default.
- W2767459365 hasConceptScore W2767459365C81363708 @default.
- W2767459365 hasConceptScore W2767459365C90509273 @default.
- W2767459365 hasFunder F4320332299 @default.
- W2767459365 hasIssue "4" @default.