Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767496117> ?p ?o ?g. }
- W2767496117 endingPage "108879" @default.
- W2767496117 startingPage "108867" @default.
- W2767496117 abstract "// Wenzheng Bao 1, * , Zhu-Hong You 2, * and De-Shuang Huang 1 1 Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China 2 Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China * The first two authors should be regarded as joint First Authors Correspondence to: De-Shuang Huang, email: dshuang@tongji.edu.cn Keywords: disease; post translational modification; classification Received: July 14, 2017 Accepted: September 03, 2017 Published: November 06, 2017 ABSTRACT Recently, experiments revealed the pupylation to be a signal for the selective regulation of proteins in several serious human diseases. As one of the most significant post translational modification in the field of biology and disease, pupylation has the ability to playing the key role in the regulation various diseases’ biological processes. Meanwhile, effectively identification such type modification will be helpful for proteins to perform their biological functions and contribute to understanding the molecular mechanism, which is the foundation of drug design. The existing algorithms of identification such types of modified sites often have some defects, such as low accuracy and time-consuming. In this research, the pupylation sites’ identification model, CIPPN, demonstrates better performance than other existing approaches in this field. The proposed predictor achieves Acc value of 89.12 and Mcc value of 0.7949 in 10-fold cross-validation tests in the Pupdb Database ( http://cwtung.kmu.edu.tw/pupdb ). Significantly, such algorithm not only investigates the sequential, structural and evolutionary hallmarks around pupylation sites but also compares the differences of pupylation from the environmental, conservative and functional characterization of substrates. Therefore, the proposed feature description approach and algorithm results prove to be useful for further experimental investigation of such modification’s identification." @default.
- W2767496117 created "2017-11-17" @default.
- W2767496117 creator A5019805735 @default.
- W2767496117 creator A5030950144 @default.
- W2767496117 creator A5060381913 @default.
- W2767496117 date "2017-11-06" @default.
- W2767496117 modified "2023-09-24" @default.
- W2767496117 title "CIPPN: computational identification of protein pupylation sites by using neural network" @default.
- W2767496117 cites W1411285485 @default.
- W2767496117 cites W1517546728 @default.
- W2767496117 cites W1556218031 @default.
- W2767496117 cites W174072365 @default.
- W2767496117 cites W1858559152 @default.
- W2767496117 cites W1967888993 @default.
- W2767496117 cites W1970068990 @default.
- W2767496117 cites W1974403366 @default.
- W2767496117 cites W1976873804 @default.
- W2767496117 cites W1977927254 @default.
- W2767496117 cites W1982664117 @default.
- W2767496117 cites W1994676170 @default.
- W2767496117 cites W1999982643 @default.
- W2767496117 cites W2001012564 @default.
- W2767496117 cites W2001571840 @default.
- W2767496117 cites W2003204068 @default.
- W2767496117 cites W2007618103 @default.
- W2767496117 cites W2007805002 @default.
- W2767496117 cites W2013853442 @default.
- W2767496117 cites W2014731953 @default.
- W2767496117 cites W2016172184 @default.
- W2767496117 cites W2017229033 @default.
- W2767496117 cites W2022956634 @default.
- W2767496117 cites W2029008895 @default.
- W2767496117 cites W2037845615 @default.
- W2767496117 cites W2038020595 @default.
- W2767496117 cites W2043338013 @default.
- W2767496117 cites W2044762720 @default.
- W2767496117 cites W2046534253 @default.
- W2767496117 cites W2049324939 @default.
- W2767496117 cites W2049662137 @default.
- W2767496117 cites W2052776717 @default.
- W2767496117 cites W2053848019 @default.
- W2767496117 cites W2063399687 @default.
- W2767496117 cites W2064466867 @default.
- W2767496117 cites W2077770566 @default.
- W2767496117 cites W2079056345 @default.
- W2767496117 cites W2079483988 @default.
- W2767496117 cites W2081506603 @default.
- W2767496117 cites W2083436950 @default.
- W2767496117 cites W2087317522 @default.
- W2767496117 cites W2092368988 @default.
- W2767496117 cites W2093509030 @default.
- W2767496117 cites W2094397139 @default.
- W2767496117 cites W2094567437 @default.
- W2767496117 cites W2101298061 @default.
- W2767496117 cites W2103174201 @default.
- W2767496117 cites W2107272621 @default.
- W2767496117 cites W2107815233 @default.
- W2767496117 cites W2109109045 @default.
- W2767496117 cites W2119697416 @default.
- W2767496117 cites W2127616922 @default.
- W2767496117 cites W2127936263 @default.
- W2767496117 cites W2128653811 @default.
- W2767496117 cites W2145786566 @default.
- W2767496117 cites W2145955247 @default.
- W2767496117 cites W2152800101 @default.
- W2767496117 cites W2152992255 @default.
- W2767496117 cites W2153187042 @default.
- W2767496117 cites W2155004936 @default.
- W2767496117 cites W2156934870 @default.
- W2767496117 cites W2157658519 @default.
- W2767496117 cites W2158714788 @default.
- W2767496117 cites W2163449716 @default.
- W2767496117 cites W2169009914 @default.
- W2767496117 cites W2170682402 @default.
- W2767496117 cites W2341232534 @default.
- W2767496117 cites W278909723 @default.
- W2767496117 cites W4213345021 @default.
- W2767496117 cites W4249920046 @default.
- W2767496117 cites W69400297 @default.
- W2767496117 doi "https://doi.org/10.18632/oncotarget.22335" @default.
- W2767496117 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5752488" @default.
- W2767496117 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29312575" @default.
- W2767496117 hasPublicationYear "2017" @default.
- W2767496117 type Work @default.
- W2767496117 sameAs 2767496117 @default.
- W2767496117 citedByCount "17" @default.
- W2767496117 countsByYear W27674961172018 @default.
- W2767496117 countsByYear W27674961172019 @default.
- W2767496117 countsByYear W27674961172020 @default.
- W2767496117 countsByYear W27674961172021 @default.
- W2767496117 countsByYear W27674961172022 @default.
- W2767496117 countsByYear W27674961172023 @default.
- W2767496117 crossrefType "journal-article" @default.
- W2767496117 hasAuthorship W2767496117A5019805735 @default.
- W2767496117 hasAuthorship W2767496117A5030950144 @default.
- W2767496117 hasAuthorship W2767496117A5060381913 @default.
- W2767496117 hasBestOaLocation W27674961171 @default.
- W2767496117 hasConcept C100631289 @default.