Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767546953> ?p ?o ?g. }
- W2767546953 abstract "Emotion perception is person-dependent and variable. Dimensional characterizations of emotion can capture this variability by describing emotion in terms of its properties (e.g., valence, positive vs. negative, and activation, calm vs. excited). However, in many emotion recognition systems, this variability is often considered noise and is attenuated by averaging across raters. Yet, inter-rater variability provides information about the subtlety or clarity of an emotional expression and can be used to describe complex emotions. In this paper, we investigate methods that can effectively capture the variability across evaluators by predicting emotion perception as a discrete probability distribution in the valence-activation space. We propose: (1) a label processing method that can generate two-dimensional discrete probability distributions of emotion from a limited number of ordinal labels; (2) a new approach that predicts the generated probabilistic distributions using dynamic audio-visual features and Convolutional Neural Networks (CNNs). Our experimental results on the MSP-IMPROV corpus suggest that the proposed approach is more effective than the conventional Support Vector Regressions (SVRs) approach with utterance-level statistical features, and that feature-level fusion of the audio and video modalities outperforms decision-level fusion. The proposed CNN model predominantly improves the prediction accuracy for the valence dimension and brings a consistent performance improvement over data recorded from natural interactions. The results demonstrate the effectiveness of generating emotion distributions from limited number of labels and predicting the distribution using dynamic features and neural networks." @default.
- W2767546953 created "2017-11-17" @default.
- W2767546953 creator A5003136334 @default.
- W2767546953 creator A5037276743 @default.
- W2767546953 creator A5079381897 @default.
- W2767546953 date "2017-11-03" @default.
- W2767546953 modified "2023-09-24" @default.
- W2767546953 title "Predicting the distribution of emotion perception: capturing inter-rater variability" @default.
- W2767546953 cites W1588539311 @default.
- W2767546953 cites W1655469623 @default.
- W2767546953 cites W1966940075 @default.
- W2767546953 cites W1973270182 @default.
- W2767546953 cites W2000271339 @default.
- W2767546953 cites W2005418748 @default.
- W2767546953 cites W2035424729 @default.
- W2767546953 cites W2045528981 @default.
- W2767546953 cites W2055911634 @default.
- W2767546953 cites W2075335860 @default.
- W2767546953 cites W2087618018 @default.
- W2767546953 cites W2104084893 @default.
- W2767546953 cites W211912913 @default.
- W2767546953 cites W2125462608 @default.
- W2767546953 cites W2141517887 @default.
- W2767546953 cites W2149628368 @default.
- W2767546953 cites W2152491694 @default.
- W2767546953 cites W2153635508 @default.
- W2767546953 cites W2153822685 @default.
- W2767546953 cites W2158630797 @default.
- W2767546953 cites W2160929029 @default.
- W2767546953 cites W2162745601 @default.
- W2767546953 cites W2164186291 @default.
- W2767546953 cites W2293804193 @default.
- W2767546953 cites W2342475039 @default.
- W2767546953 cites W2395639500 @default.
- W2767546953 cites W2397175282 @default.
- W2767546953 cites W2399733683 @default.
- W2767546953 cites W2546875627 @default.
- W2767546953 cites W2604773025 @default.
- W2767546953 cites W2648194195 @default.
- W2767546953 cites W2963196848 @default.
- W2767546953 cites W3104298728 @default.
- W2767546953 doi "https://doi.org/10.1145/3136755.3136792" @default.
- W2767546953 hasPublicationYear "2017" @default.
- W2767546953 type Work @default.
- W2767546953 sameAs 2767546953 @default.
- W2767546953 citedByCount "18" @default.
- W2767546953 countsByYear W27675469532018 @default.
- W2767546953 countsByYear W27675469532019 @default.
- W2767546953 countsByYear W27675469532021 @default.
- W2767546953 countsByYear W27675469532022 @default.
- W2767546953 crossrefType "proceedings-article" @default.
- W2767546953 hasAuthorship W2767546953A5003136334 @default.
- W2767546953 hasAuthorship W2767546953A5037276743 @default.
- W2767546953 hasAuthorship W2767546953A5079381897 @default.
- W2767546953 hasConcept C105795698 @default.
- W2767546953 hasConcept C119857082 @default.
- W2767546953 hasConcept C121332964 @default.
- W2767546953 hasConcept C144024400 @default.
- W2767546953 hasConcept C149441793 @default.
- W2767546953 hasConcept C153180895 @default.
- W2767546953 hasConcept C154945302 @default.
- W2767546953 hasConcept C15744967 @default.
- W2767546953 hasConcept C168900304 @default.
- W2767546953 hasConcept C169760540 @default.
- W2767546953 hasConcept C26760741 @default.
- W2767546953 hasConcept C2779903281 @default.
- W2767546953 hasConcept C28490314 @default.
- W2767546953 hasConcept C33923547 @default.
- W2767546953 hasConcept C36289849 @default.
- W2767546953 hasConcept C41008148 @default.
- W2767546953 hasConcept C49937458 @default.
- W2767546953 hasConcept C62520636 @default.
- W2767546953 hasConcept C81363708 @default.
- W2767546953 hasConceptScore W2767546953C105795698 @default.
- W2767546953 hasConceptScore W2767546953C119857082 @default.
- W2767546953 hasConceptScore W2767546953C121332964 @default.
- W2767546953 hasConceptScore W2767546953C144024400 @default.
- W2767546953 hasConceptScore W2767546953C149441793 @default.
- W2767546953 hasConceptScore W2767546953C153180895 @default.
- W2767546953 hasConceptScore W2767546953C154945302 @default.
- W2767546953 hasConceptScore W2767546953C15744967 @default.
- W2767546953 hasConceptScore W2767546953C168900304 @default.
- W2767546953 hasConceptScore W2767546953C169760540 @default.
- W2767546953 hasConceptScore W2767546953C26760741 @default.
- W2767546953 hasConceptScore W2767546953C2779903281 @default.
- W2767546953 hasConceptScore W2767546953C28490314 @default.
- W2767546953 hasConceptScore W2767546953C33923547 @default.
- W2767546953 hasConceptScore W2767546953C36289849 @default.
- W2767546953 hasConceptScore W2767546953C41008148 @default.
- W2767546953 hasConceptScore W2767546953C49937458 @default.
- W2767546953 hasConceptScore W2767546953C62520636 @default.
- W2767546953 hasConceptScore W2767546953C81363708 @default.
- W2767546953 hasFunder F4320306076 @default.
- W2767546953 hasLocation W27675469531 @default.
- W2767546953 hasOpenAccess W2767546953 @default.
- W2767546953 hasPrimaryLocation W27675469531 @default.
- W2767546953 hasRelatedWork W2175746458 @default.
- W2767546953 hasRelatedWork W2406522397 @default.
- W2767546953 hasRelatedWork W2613736958 @default.
- W2767546953 hasRelatedWork W2732542196 @default.