Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767577269> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2767577269 abstract "This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems." @default.
- W2767577269 created "2017-11-17" @default.
- W2767577269 creator A5023544538 @default.
- W2767577269 date "2015-10-23" @default.
- W2767577269 modified "2023-10-01" @default.
- W2767577269 title "Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning" @default.
- W2767577269 hasPublicationYear "2015" @default.
- W2767577269 type Work @default.
- W2767577269 sameAs 2767577269 @default.
- W2767577269 citedByCount "10" @default.
- W2767577269 countsByYear W27675772692018 @default.
- W2767577269 countsByYear W27675772692019 @default.
- W2767577269 countsByYear W27675772692020 @default.
- W2767577269 countsByYear W27675772692021 @default.
- W2767577269 crossrefType "book" @default.
- W2767577269 hasAuthorship W2767577269A5023544538 @default.
- W2767577269 hasConcept C115903868 @default.
- W2767577269 hasConcept C119857082 @default.
- W2767577269 hasConcept C124101348 @default.
- W2767577269 hasConcept C126838900 @default.
- W2767577269 hasConcept C154945302 @default.
- W2767577269 hasConcept C171268870 @default.
- W2767577269 hasConcept C199360897 @default.
- W2767577269 hasConcept C202444582 @default.
- W2767577269 hasConcept C2522767166 @default.
- W2767577269 hasConcept C2777601897 @default.
- W2767577269 hasConcept C2778143727 @default.
- W2767577269 hasConcept C33923547 @default.
- W2767577269 hasConcept C41008148 @default.
- W2767577269 hasConcept C71924100 @default.
- W2767577269 hasConcept C75684735 @default.
- W2767577269 hasConcept C9652623 @default.
- W2767577269 hasConceptScore W2767577269C115903868 @default.
- W2767577269 hasConceptScore W2767577269C119857082 @default.
- W2767577269 hasConceptScore W2767577269C124101348 @default.
- W2767577269 hasConceptScore W2767577269C126838900 @default.
- W2767577269 hasConceptScore W2767577269C154945302 @default.
- W2767577269 hasConceptScore W2767577269C171268870 @default.
- W2767577269 hasConceptScore W2767577269C199360897 @default.
- W2767577269 hasConceptScore W2767577269C202444582 @default.
- W2767577269 hasConceptScore W2767577269C2522767166 @default.
- W2767577269 hasConceptScore W2767577269C2777601897 @default.
- W2767577269 hasConceptScore W2767577269C2778143727 @default.
- W2767577269 hasConceptScore W2767577269C33923547 @default.
- W2767577269 hasConceptScore W2767577269C41008148 @default.
- W2767577269 hasConceptScore W2767577269C71924100 @default.
- W2767577269 hasConceptScore W2767577269C75684735 @default.
- W2767577269 hasConceptScore W2767577269C9652623 @default.
- W2767577269 hasLocation W27675772691 @default.
- W2767577269 hasOpenAccess W2767577269 @default.
- W2767577269 hasPrimaryLocation W27675772691 @default.
- W2767577269 hasRelatedWork W1490398938 @default.
- W2767577269 hasRelatedWork W1564819898 @default.
- W2767577269 hasRelatedWork W1742521026 @default.
- W2767577269 hasRelatedWork W2239530662 @default.
- W2767577269 hasRelatedWork W2289099059 @default.
- W2767577269 hasRelatedWork W2336429514 @default.
- W2767577269 hasRelatedWork W2499581503 @default.
- W2767577269 hasRelatedWork W2546786407 @default.
- W2767577269 hasRelatedWork W2557283755 @default.
- W2767577269 hasRelatedWork W2911964244 @default.
- W2767577269 hasRelatedWork W2922377387 @default.
- W2767577269 hasRelatedWork W2962844010 @default.
- W2767577269 hasRelatedWork W3088411295 @default.
- W2767577269 hasRelatedWork W3106614637 @default.
- W2767577269 hasRelatedWork W3111632340 @default.
- W2767577269 hasRelatedWork W3134344922 @default.
- W2767577269 hasRelatedWork W3135120146 @default.
- W2767577269 hasRelatedWork W3176114758 @default.
- W2767577269 hasRelatedWork W567218088 @default.
- W2767577269 hasRelatedWork W607505555 @default.
- W2767577269 isParatext "false" @default.
- W2767577269 isRetracted "false" @default.
- W2767577269 magId "2767577269" @default.
- W2767577269 workType "book" @default.