Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767688719> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2767688719 abstract "Learning in Multiple-cue Judgment Tasks Bettina von Helversen (Bettina.vonhelversen@unibas.ch) University of Basel, Department of Psychology, Missionsstr, 62a 4057, Basel, Switzerland Jorg Rieskamp (joerg.rieskamp@unibas.ch) University of Basel, Department of Psychology, Missionsstr, 62a 4057, Basel, Switzerland Abstract mapping model described participants’ responses well in tasks that could not be solved by a linear model and where participants had knowledge about the cues’ polarity; that is, the sign of the correlation between a cue and the criterion. The exemplar model performed well, in non-linear environments with no prior knowledge about cue polarity, and a linear additive model performed well if the task structure was linear. In our daily lives we often make quantitative judgments based on multiple pieces of information such as evaluating a student’s paper based on form and content. Psychological research suggests that humans rely on several strategies to make multiple-cue judgments. The strategy that is used depends on the structure of the task. In contrast, recent research on learning in judgment tasks suggests that learning is relatively independent of task structure. In a simulation study we investigated how the performance of several learning models is influenced by the structure of the task and the amount of learning experience. We found that a linear additive neuronal network model performed well regardless of task structure and amount of learning. However, with little learning a heuristic model performed similarly well, and with extensive learning, associative learning models caught up with the linear additive model. Learning in Multiple-cue Judgment Tasks Although many studies in multiple-cue judgment research rely on extensive learning phases, there have been relatively few attempts to understand and model the learning process. However, the learning process is crucial to understand how people come to make judgments and which cognitive processes they rely on. Particularly, if — as suggested — people rely in their judgment on multiple cognitive processes, this should also be reflected in the learning phase. Additionally, the learning phase itself could play an important role in determining how later judgments are made. Recently, Kelley and Busemeyer (2008) compared how well several models could describe the learning process in various multiple-cue judgment tasks. They compared a rule-based neuronal network model with a delta-learning rule (e.g. Gluck & Bower, 1988), which can be seen as a learning version of a linear additive model with an associative connectionist network model (ALM, Busemeyer, Byun, DeLosh, & McDaniel, 1997; Busemeyer, Myung, & McDaniel, 1993). They found that the rule-based neuronal network models described the learning process best in the majority of the tasks, suggesting that learning may be relatively independent of task structure. These results are somewhat contrary to the research by Juslin et al. (2008) and von Helversen and Rieskamp (2009) on multiple-cue judgments, suggesting that humans rely on a variety of strategies, depending on the structure of the task (e.g. Juslin, et al., 2008; Rieskamp & Otto, 2006). This raises the question of whether learning depends on the task structure and what may be the mechanisms that lead to a switch in cognitive processing during learning. In this paper we investigate two reasons that may cause a shift in cognitive processing during learning in a multiple-cue judgment task. One reason to rely on different learning strategies may be that their learning performance differs depending on the structure of the task. Thus, we will Keywords: Learning; multiple-cue judgments; Compu- tational modeling Multiple-cue Judgments When judging objects on a continuous criterion such as the quality of a research paper, people often rely on multiple sources of information. For example, the clarity of the writing, the novelty of the research and the methodological precision may be used as important aspects for evaluating a paper. Several models have been developed to describe how humans solve these judgment problems. Traditionally, linear additive models have been employed to capture how humans weigh and integrate information. Social Judgment Theory (SJT; see Doherty and Kurz, 1996; Cooksey, 1996) relied on multiple-linear regression models to capture decision policies and researchers have used this approach successfully to describe judgments in many areas (see Brehmer, 1988). Similarly, Anderson (1981) suggested that humans combine information in a linear additive fashion. However, recently it has been suggested that humans may have multiple cognitive strategies available to make multiple-cue judgments. Juslin, Karlsson, and Olsson (2008) suggested that depending on the structure of the tasks, humans may switch between a rule-based cue abstraction approach and a similarity–based exemplar approach. Similarly, von Helversen and Rieskamp (2008, 2009) suggested the mapping model, a heuristic model for multiple-cue judgments, and showed that the model that was best in describing participants’ behavior depended on the task structure. More specifically, they showed that the" @default.
- W2767688719 created "2017-11-17" @default.
- W2767688719 creator A5057803453 @default.
- W2767688719 creator A5067952043 @default.
- W2767688719 date "2010-01-01" @default.
- W2767688719 modified "2023-09-23" @default.
- W2767688719 title "Learning in Multiple-cue Judgment Tasks" @default.
- W2767688719 cites W1604268648 @default.
- W2767688719 cites W1731049107 @default.
- W2767688719 cites W1978702305 @default.
- W2767688719 cites W2009408857 @default.
- W2767688719 cites W2011806454 @default.
- W2767688719 cites W2013661501 @default.
- W2767688719 cites W2018124860 @default.
- W2767688719 cites W2022141716 @default.
- W2767688719 cites W2049178503 @default.
- W2767688719 cites W2074706172 @default.
- W2767688719 cites W2082636843 @default.
- W2767688719 cites W2124225879 @default.
- W2767688719 cites W2132415562 @default.
- W2767688719 cites W2160171384 @default.
- W2767688719 cites W2166700064 @default.
- W2767688719 cites W2895892283 @default.
- W2767688719 cites W3128312323 @default.
- W2767688719 cites W607569995 @default.
- W2767688719 cites W2063104949 @default.
- W2767688719 hasPublicationYear "2010" @default.
- W2767688719 type Work @default.
- W2767688719 sameAs 2767688719 @default.
- W2767688719 citedByCount "0" @default.
- W2767688719 crossrefType "journal-article" @default.
- W2767688719 hasAuthorship W2767688719A5057803453 @default.
- W2767688719 hasAuthorship W2767688719A5067952043 @default.
- W2767688719 hasConcept C119857082 @default.
- W2767688719 hasConcept C154945302 @default.
- W2767688719 hasConcept C15744967 @default.
- W2767688719 hasConcept C159423971 @default.
- W2767688719 hasConcept C162324750 @default.
- W2767688719 hasConcept C173801870 @default.
- W2767688719 hasConcept C180747234 @default.
- W2767688719 hasConcept C187736073 @default.
- W2767688719 hasConcept C202444582 @default.
- W2767688719 hasConcept C2776502983 @default.
- W2767688719 hasConcept C2780451532 @default.
- W2767688719 hasConcept C2983526489 @default.
- W2767688719 hasConcept C33923547 @default.
- W2767688719 hasConcept C41008148 @default.
- W2767688719 hasConceptScore W2767688719C119857082 @default.
- W2767688719 hasConceptScore W2767688719C154945302 @default.
- W2767688719 hasConceptScore W2767688719C15744967 @default.
- W2767688719 hasConceptScore W2767688719C159423971 @default.
- W2767688719 hasConceptScore W2767688719C162324750 @default.
- W2767688719 hasConceptScore W2767688719C173801870 @default.
- W2767688719 hasConceptScore W2767688719C180747234 @default.
- W2767688719 hasConceptScore W2767688719C187736073 @default.
- W2767688719 hasConceptScore W2767688719C202444582 @default.
- W2767688719 hasConceptScore W2767688719C2776502983 @default.
- W2767688719 hasConceptScore W2767688719C2780451532 @default.
- W2767688719 hasConceptScore W2767688719C2983526489 @default.
- W2767688719 hasConceptScore W2767688719C33923547 @default.
- W2767688719 hasConceptScore W2767688719C41008148 @default.
- W2767688719 hasIssue "32" @default.
- W2767688719 hasLocation W27676887191 @default.
- W2767688719 hasOpenAccess W2767688719 @default.
- W2767688719 hasPrimaryLocation W27676887191 @default.
- W2767688719 hasRelatedWork W1513849725 @default.
- W2767688719 hasRelatedWork W1584965396 @default.
- W2767688719 hasRelatedWork W1999369476 @default.
- W2767688719 hasRelatedWork W2049178503 @default.
- W2767688719 hasRelatedWork W2058346590 @default.
- W2767688719 hasRelatedWork W2061936356 @default.
- W2767688719 hasRelatedWork W2068820241 @default.
- W2767688719 hasRelatedWork W2151638831 @default.
- W2767688719 hasRelatedWork W2402131973 @default.
- W2767688719 hasRelatedWork W2402670475 @default.
- W2767688719 hasRelatedWork W2414513241 @default.
- W2767688719 hasRelatedWork W2589919542 @default.
- W2767688719 hasRelatedWork W2590243617 @default.
- W2767688719 hasRelatedWork W2767710836 @default.
- W2767688719 hasRelatedWork W2939988623 @default.
- W2767688719 hasRelatedWork W2940830727 @default.
- W2767688719 hasRelatedWork W3003482291 @default.
- W2767688719 hasRelatedWork W3024940253 @default.
- W2767688719 hasRelatedWork W3131881724 @default.
- W2767688719 hasRelatedWork W653629353 @default.
- W2767688719 hasVolume "32" @default.
- W2767688719 isParatext "false" @default.
- W2767688719 isRetracted "false" @default.
- W2767688719 magId "2767688719" @default.
- W2767688719 workType "article" @default.