Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767713063> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2767713063 abstract "Analysing attractiveness of places in a region is beneficial to support urban planning and policy making. However, the attractiveness of a place is a subjective and high-level concept which is difficult to quantify. The existing methods rely on traditional surveys which may require high cost and have low scalability. This thesis attempts to quantify attractiveness of a place in a more efficient way and develop a model which can automatically predict attractiveness based on Street-View data (i.e. from Google Street View). As a study case, 800 Google Street View images from 200 locations in Amsterdam have been extracted, and their attractiveness perceptions have been evaluated via crowd-sourcing to get the ground-truth information. The other attributes which are presumed to have a relationship with attractiveness are also assessed, such as familiarity, uniqueness, friendliness, pleasure, arousal, and dominance. The research and analysis revealed several insights related to the attractiveness of places. Attractive perception when seeing a place is positively correlated with perception of uniqueness, friendliness, pleasure, and dominance. Moreover, pleasure is possibly multi-collinear with attractiveness. It was also found that attractiveness perception has low spatial auto-correlation, which means that nearby places do not necessarily have similar attractiveness. Some visual features related to attractiveness were also investigated. The result indicated that scenes related to roads and residential buildings are less attractive, meanwhile, scenes related to greenery, blue sky, and water environment are more attractive. A Convolutional Neural Network (CNN) model has been developed via machine learning approach which could automatically predict attractiveness perception of a place based on its representing Google Street View image. The developed model achieved 55.9% accuracy and RMSE of 0.70 to predict attractiveness in 5 ordinal values." @default.
- W2767713063 created "2017-11-17" @default.
- W2767713063 creator A5069265962 @default.
- W2767713063 date "2017-01-01" @default.
- W2767713063 modified "2023-09-27" @default.
- W2767713063 title "Quantifying and Predicting Urban Attractiveness with Street-View Data and Convolutional Neural Networks" @default.
- W2767713063 hasPublicationYear "2017" @default.
- W2767713063 type Work @default.
- W2767713063 sameAs 2767713063 @default.
- W2767713063 citedByCount "0" @default.
- W2767713063 crossrefType "journal-article" @default.
- W2767713063 hasAuthorship W2767713063A5069265962 @default.
- W2767713063 hasConcept C104317684 @default.
- W2767713063 hasConcept C11171543 @default.
- W2767713063 hasConcept C151913843 @default.
- W2767713063 hasConcept C154945302 @default.
- W2767713063 hasConcept C15744967 @default.
- W2767713063 hasConcept C169760540 @default.
- W2767713063 hasConcept C185592680 @default.
- W2767713063 hasConcept C205649164 @default.
- W2767713063 hasConcept C26760741 @default.
- W2767713063 hasConcept C2777113389 @default.
- W2767713063 hasConcept C31173074 @default.
- W2767713063 hasConcept C41008148 @default.
- W2767713063 hasConcept C55493867 @default.
- W2767713063 hasConcept C81363708 @default.
- W2767713063 hasConceptScore W2767713063C104317684 @default.
- W2767713063 hasConceptScore W2767713063C11171543 @default.
- W2767713063 hasConceptScore W2767713063C151913843 @default.
- W2767713063 hasConceptScore W2767713063C154945302 @default.
- W2767713063 hasConceptScore W2767713063C15744967 @default.
- W2767713063 hasConceptScore W2767713063C169760540 @default.
- W2767713063 hasConceptScore W2767713063C185592680 @default.
- W2767713063 hasConceptScore W2767713063C205649164 @default.
- W2767713063 hasConceptScore W2767713063C26760741 @default.
- W2767713063 hasConceptScore W2767713063C2777113389 @default.
- W2767713063 hasConceptScore W2767713063C31173074 @default.
- W2767713063 hasConceptScore W2767713063C41008148 @default.
- W2767713063 hasConceptScore W2767713063C55493867 @default.
- W2767713063 hasConceptScore W2767713063C81363708 @default.
- W2767713063 hasLocation W27677130631 @default.
- W2767713063 hasOpenAccess W2767713063 @default.
- W2767713063 hasPrimaryLocation W27677130631 @default.
- W2767713063 hasRelatedWork W2478090196 @default.
- W2767713063 hasRelatedWork W2553546881 @default.
- W2767713063 hasRelatedWork W2747900861 @default.
- W2767713063 hasRelatedWork W2799003896 @default.
- W2767713063 hasRelatedWork W2890231632 @default.
- W2767713063 hasRelatedWork W289230117 @default.
- W2767713063 hasRelatedWork W2920613655 @default.
- W2767713063 hasRelatedWork W2943473891 @default.
- W2767713063 hasRelatedWork W2994643671 @default.
- W2767713063 hasRelatedWork W3081903687 @default.
- W2767713063 hasRelatedWork W3119672322 @default.
- W2767713063 hasRelatedWork W3148592637 @default.
- W2767713063 hasRelatedWork W3151585875 @default.
- W2767713063 hasRelatedWork W3174705956 @default.
- W2767713063 hasRelatedWork W3184563394 @default.
- W2767713063 hasRelatedWork W3190278093 @default.
- W2767713063 hasRelatedWork W3199469064 @default.
- W2767713063 hasRelatedWork W3203193628 @default.
- W2767713063 hasRelatedWork W3207608902 @default.
- W2767713063 hasRelatedWork W3210517877 @default.
- W2767713063 isParatext "false" @default.
- W2767713063 isRetracted "false" @default.
- W2767713063 magId "2767713063" @default.
- W2767713063 workType "article" @default.