Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767753278> ?p ?o ?g. }
- W2767753278 abstract "Multi-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and user-friendly." @default.
- W2767753278 created "2017-11-17" @default.
- W2767753278 creator A5003275797 @default.
- W2767753278 creator A5020868800 @default.
- W2767753278 creator A5081380303 @default.
- W2767753278 date "2017-10-01" @default.
- W2767753278 modified "2023-10-02" @default.
- W2767753278 title "Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization" @default.
- W2767753278 cites W1497256448 @default.
- W2767753278 cites W1595159159 @default.
- W2767753278 cites W1595498733 @default.
- W2767753278 cites W1905847227 @default.
- W2767753278 cites W1957430778 @default.
- W2767753278 cites W1988752523 @default.
- W2767753278 cites W2006694777 @default.
- W2767753278 cites W2008499862 @default.
- W2767753278 cites W2017963665 @default.
- W2767753278 cites W2040169687 @default.
- W2767753278 cites W2057493500 @default.
- W2767753278 cites W2072955302 @default.
- W2767753278 cites W2085080956 @default.
- W2767753278 cites W2086167429 @default.
- W2767753278 cites W2096411924 @default.
- W2767753278 cites W2103748993 @default.
- W2767753278 cites W2106334424 @default.
- W2767753278 cites W2112299196 @default.
- W2767753278 cites W2115284428 @default.
- W2767753278 cites W2116661285 @default.
- W2767753278 cites W2119821739 @default.
- W2767753278 cites W2122496402 @default.
- W2767753278 cites W2126105956 @default.
- W2767753278 cites W2136017933 @default.
- W2767753278 cites W2150563191 @default.
- W2767753278 cites W2154943049 @default.
- W2767753278 cites W2156023754 @default.
- W2767753278 cites W2158769954 @default.
- W2767753278 cites W2164780532 @default.
- W2767753278 cites W2261054240 @default.
- W2767753278 cites W2511697263 @default.
- W2767753278 cites W2512089339 @default.
- W2767753278 cites W2612710542 @default.
- W2767753278 cites W273581954 @default.
- W2767753278 cites W2963618366 @default.
- W2767753278 cites W658797333 @default.
- W2767753278 cites W85881369 @default.
- W2767753278 doi "https://doi.org/10.1109/sibgrapi.2017.23" @default.
- W2767753278 hasPublicationYear "2017" @default.
- W2767753278 type Work @default.
- W2767753278 sameAs 2767753278 @default.
- W2767753278 citedByCount "1" @default.
- W2767753278 countsByYear W27677532782017 @default.
- W2767753278 crossrefType "proceedings-article" @default.
- W2767753278 hasAuthorship W2767753278A5003275797 @default.
- W2767753278 hasAuthorship W2767753278A5020868800 @default.
- W2767753278 hasAuthorship W2767753278A5081380303 @default.
- W2767753278 hasConcept C104317684 @default.
- W2767753278 hasConcept C108010975 @default.
- W2767753278 hasConcept C11413529 @default.
- W2767753278 hasConcept C119857082 @default.
- W2767753278 hasConcept C126255220 @default.
- W2767753278 hasConcept C137836250 @default.
- W2767753278 hasConcept C154945302 @default.
- W2767753278 hasConcept C185592680 @default.
- W2767753278 hasConcept C33923547 @default.
- W2767753278 hasConcept C41008148 @default.
- W2767753278 hasConcept C55493867 @default.
- W2767753278 hasConcept C63479239 @default.
- W2767753278 hasConcept C6557445 @default.
- W2767753278 hasConcept C68781425 @default.
- W2767753278 hasConcept C86803240 @default.
- W2767753278 hasConcept C95623464 @default.
- W2767753278 hasConceptScore W2767753278C104317684 @default.
- W2767753278 hasConceptScore W2767753278C108010975 @default.
- W2767753278 hasConceptScore W2767753278C11413529 @default.
- W2767753278 hasConceptScore W2767753278C119857082 @default.
- W2767753278 hasConceptScore W2767753278C126255220 @default.
- W2767753278 hasConceptScore W2767753278C137836250 @default.
- W2767753278 hasConceptScore W2767753278C154945302 @default.
- W2767753278 hasConceptScore W2767753278C185592680 @default.
- W2767753278 hasConceptScore W2767753278C33923547 @default.
- W2767753278 hasConceptScore W2767753278C41008148 @default.
- W2767753278 hasConceptScore W2767753278C55493867 @default.
- W2767753278 hasConceptScore W2767753278C63479239 @default.
- W2767753278 hasConceptScore W2767753278C6557445 @default.
- W2767753278 hasConceptScore W2767753278C68781425 @default.
- W2767753278 hasConceptScore W2767753278C86803240 @default.
- W2767753278 hasConceptScore W2767753278C95623464 @default.
- W2767753278 hasLocation W27677532781 @default.
- W2767753278 hasOpenAccess W2767753278 @default.
- W2767753278 hasPrimaryLocation W27677532781 @default.
- W2767753278 hasRelatedWork W1606456968 @default.
- W2767753278 hasRelatedWork W1761970801 @default.
- W2767753278 hasRelatedWork W186881209 @default.
- W2767753278 hasRelatedWork W2003363925 @default.
- W2767753278 hasRelatedWork W2040854421 @default.
- W2767753278 hasRelatedWork W2079411085 @default.
- W2767753278 hasRelatedWork W2474920480 @default.
- W2767753278 hasRelatedWork W2559888338 @default.
- W2767753278 hasRelatedWork W2565688737 @default.
- W2767753278 hasRelatedWork W2795559022 @default.