Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767888965> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2767888965 endingPage "177" @default.
- W2767888965 startingPage "171" @default.
- W2767888965 abstract "In the field of applied animal behaviour, video recordings of a scene of interest are often made and then evaluated by experts. This evaluation is based on different criteria (number of animals present, an occurrence of certain interactions, the proximity between animals and so forth) and aims to filter out video sequences that contain irrelevant information. However, such task requires a tremendous amount of time and resources, making manual approach ineffective. To reduce the amount of time the experts spend on watching the uninteresting video, this study introduces an automated watchdog system that can discard some of the recorded video material based on user-defined criteria. A pilot study on cows was made where a convolutional neural network detector was used to detect and count the number of cows in the scene as well as include distances and interactions between cows as filtering criteria. This approach removed 38% (50% for additional filter parameters) of the recordings while only losing 1% (4%) of the potentially interesting video frames." @default.
- W2767888965 created "2017-11-17" @default.
- W2767888965 creator A5008032322 @default.
- W2767888965 creator A5028899723 @default.
- W2767888965 creator A5057919098 @default.
- W2767888965 creator A5078165300 @default.
- W2767888965 date "2017-12-18" @default.
- W2767888965 modified "2023-10-18" @default.
- W2767888965 title "Convolutional neural network‐based cow interaction watchdog" @default.
- W2767888965 cites W1677182931 @default.
- W2767888965 cites W1968271053 @default.
- W2767888965 cites W1970394856 @default.
- W2767888965 cites W2010485637 @default.
- W2767888965 cites W2033819227 @default.
- W2767888965 cites W2051633245 @default.
- W2767888965 cites W2061681393 @default.
- W2767888965 cites W2067070465 @default.
- W2767888965 cites W2082449953 @default.
- W2767888965 cites W2211334024 @default.
- W2767888965 cites W2322480645 @default.
- W2767888965 cites W2483815707 @default.
- W2767888965 cites W2570343428 @default.
- W2767888965 cites W2963037989 @default.
- W2767888965 cites W2964297960 @default.
- W2767888965 cites W3106250896 @default.
- W2767888965 cites W4246016631 @default.
- W2767888965 doi "https://doi.org/10.1049/iet-cvi.2017.0077" @default.
- W2767888965 hasPublicationYear "2017" @default.
- W2767888965 type Work @default.
- W2767888965 sameAs 2767888965 @default.
- W2767888965 citedByCount "14" @default.
- W2767888965 countsByYear W27678889652018 @default.
- W2767888965 countsByYear W27678889652019 @default.
- W2767888965 countsByYear W27678889652020 @default.
- W2767888965 countsByYear W27678889652021 @default.
- W2767888965 countsByYear W27678889652022 @default.
- W2767888965 crossrefType "journal-article" @default.
- W2767888965 hasAuthorship W2767888965A5008032322 @default.
- W2767888965 hasAuthorship W2767888965A5028899723 @default.
- W2767888965 hasAuthorship W2767888965A5057919098 @default.
- W2767888965 hasAuthorship W2767888965A5078165300 @default.
- W2767888965 hasConcept C106131492 @default.
- W2767888965 hasConcept C153180895 @default.
- W2767888965 hasConcept C154945302 @default.
- W2767888965 hasConcept C162324750 @default.
- W2767888965 hasConcept C187736073 @default.
- W2767888965 hasConcept C202444582 @default.
- W2767888965 hasConcept C2780451532 @default.
- W2767888965 hasConcept C2988634675 @default.
- W2767888965 hasConcept C31972630 @default.
- W2767888965 hasConcept C33923547 @default.
- W2767888965 hasConcept C41008148 @default.
- W2767888965 hasConcept C49774154 @default.
- W2767888965 hasConcept C76155785 @default.
- W2767888965 hasConcept C81363708 @default.
- W2767888965 hasConcept C94915269 @default.
- W2767888965 hasConcept C9652623 @default.
- W2767888965 hasConceptScore W2767888965C106131492 @default.
- W2767888965 hasConceptScore W2767888965C153180895 @default.
- W2767888965 hasConceptScore W2767888965C154945302 @default.
- W2767888965 hasConceptScore W2767888965C162324750 @default.
- W2767888965 hasConceptScore W2767888965C187736073 @default.
- W2767888965 hasConceptScore W2767888965C202444582 @default.
- W2767888965 hasConceptScore W2767888965C2780451532 @default.
- W2767888965 hasConceptScore W2767888965C2988634675 @default.
- W2767888965 hasConceptScore W2767888965C31972630 @default.
- W2767888965 hasConceptScore W2767888965C33923547 @default.
- W2767888965 hasConceptScore W2767888965C41008148 @default.
- W2767888965 hasConceptScore W2767888965C49774154 @default.
- W2767888965 hasConceptScore W2767888965C76155785 @default.
- W2767888965 hasConceptScore W2767888965C81363708 @default.
- W2767888965 hasConceptScore W2767888965C94915269 @default.
- W2767888965 hasConceptScore W2767888965C9652623 @default.
- W2767888965 hasFunder F4320321033 @default.
- W2767888965 hasIssue "2" @default.
- W2767888965 hasLocation W27678889651 @default.
- W2767888965 hasOpenAccess W2767888965 @default.
- W2767888965 hasPrimaryLocation W27678889651 @default.
- W2767888965 hasRelatedWork W2175746458 @default.
- W2767888965 hasRelatedWork W2732542196 @default.
- W2767888965 hasRelatedWork W2738221750 @default.
- W2767888965 hasRelatedWork W2760085659 @default.
- W2767888965 hasRelatedWork W2883200793 @default.
- W2767888965 hasRelatedWork W2912288872 @default.
- W2767888965 hasRelatedWork W2940661641 @default.
- W2767888965 hasRelatedWork W2963891724 @default.
- W2767888965 hasRelatedWork W3012978760 @default.
- W2767888965 hasRelatedWork W3093612317 @default.
- W2767888965 hasVolume "12" @default.
- W2767888965 isParatext "false" @default.
- W2767888965 isRetracted "false" @default.
- W2767888965 magId "2767888965" @default.
- W2767888965 workType "article" @default.