Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767895699> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2767895699 abstract "We consider the problem of minimax estimation of the entropy of a density over Lipschitz balls. Dropping the usual assumption that the density is bounded away from zero, we obtain the minimax rates $(nln n)^{-s/(s+d)} + n^{-1/2}$ for $0<sleq 2$ for densities supported on $[0,1]^d$, where $s$ is the smoothness parameter and $n$ is the number of independent samples. We generalize the results to densities with unbounded support: given an Orlicz functions $Psi$ of rapid growth (such as the sub-exponential and sub-Gaussian classes), the minimax rates for densities with bounded $Psi$-Orlicz norm increase to $(nln n)^{-s/(s+d)} (Psi^{-1}(n))^{d(1-d/p(s+d))} + n^{-1/2}$, where $p$ is the norm parameter in the Lipschitz ball. We also show that the integral-form plug-in estimators with kernel density estimates fail to achieve the minimax rates, and characterize their worst case performances over the Lipschitz ball. One of the key steps in analyzing the bias relies on a novel application of the Hardy-Littlewood maximal inequality, which also leads to a new inequality on the Fisher information that may be of independent interest." @default.
- W2767895699 created "2017-11-17" @default.
- W2767895699 creator A5022543590 @default.
- W2767895699 creator A5034192173 @default.
- W2767895699 creator A5043344688 @default.
- W2767895699 creator A5077972639 @default.
- W2767895699 date "2017-11-06" @default.
- W2767895699 modified "2023-10-16" @default.
- W2767895699 title "Optimal rates of entropy estimation over Lipschitz balls" @default.
- W2767895699 cites W1488877410 @default.
- W2767895699 cites W1488909131 @default.
- W2767895699 cites W1511694993 @default.
- W2767895699 cites W1512638263 @default.
- W2767895699 cites W2026781197 @default.
- W2767895699 cites W2040820014 @default.
- W2767895699 cites W2323039997 @default.
- W2767895699 cites W2336509789 @default.
- W2767895699 cites W2496316373 @default.
- W2767895699 cites W2531121495 @default.
- W2767895699 cites W2617789632 @default.
- W2767895699 cites W2798473808 @default.
- W2767895699 cites W2963113682 @default.
- W2767895699 cites W2963305780 @default.
- W2767895699 cites W2964229204 @default.
- W2767895699 cites W3101023256 @default.
- W2767895699 cites W568673721 @default.
- W2767895699 cites W965573281 @default.
- W2767895699 doi "https://doi.org/10.48550/arxiv.1711.02141" @default.
- W2767895699 hasPublicationYear "2017" @default.
- W2767895699 type Work @default.
- W2767895699 sameAs 2767895699 @default.
- W2767895699 citedByCount "4" @default.
- W2767895699 countsByYear W27678956992019 @default.
- W2767895699 countsByYear W27678956992020 @default.
- W2767895699 countsByYear W27678956992021 @default.
- W2767895699 crossrefType "posted-content" @default.
- W2767895699 hasAuthorship W2767895699A5022543590 @default.
- W2767895699 hasAuthorship W2767895699A5034192173 @default.
- W2767895699 hasAuthorship W2767895699A5043344688 @default.
- W2767895699 hasAuthorship W2767895699A5077972639 @default.
- W2767895699 hasBestOaLocation W27678956991 @default.
- W2767895699 hasConcept C105795698 @default.
- W2767895699 hasConcept C114614502 @default.
- W2767895699 hasConcept C122041747 @default.
- W2767895699 hasConcept C126255220 @default.
- W2767895699 hasConcept C133939421 @default.
- W2767895699 hasConcept C134306372 @default.
- W2767895699 hasConcept C146324458 @default.
- W2767895699 hasConcept C149728462 @default.
- W2767895699 hasConcept C165646398 @default.
- W2767895699 hasConcept C185429906 @default.
- W2767895699 hasConcept C189508267 @default.
- W2767895699 hasConcept C22324862 @default.
- W2767895699 hasConcept C28826006 @default.
- W2767895699 hasConcept C33923547 @default.
- W2767895699 hasConcept C34388435 @default.
- W2767895699 hasConcept C71134354 @default.
- W2767895699 hasConceptScore W2767895699C105795698 @default.
- W2767895699 hasConceptScore W2767895699C114614502 @default.
- W2767895699 hasConceptScore W2767895699C122041747 @default.
- W2767895699 hasConceptScore W2767895699C126255220 @default.
- W2767895699 hasConceptScore W2767895699C133939421 @default.
- W2767895699 hasConceptScore W2767895699C134306372 @default.
- W2767895699 hasConceptScore W2767895699C146324458 @default.
- W2767895699 hasConceptScore W2767895699C149728462 @default.
- W2767895699 hasConceptScore W2767895699C165646398 @default.
- W2767895699 hasConceptScore W2767895699C185429906 @default.
- W2767895699 hasConceptScore W2767895699C189508267 @default.
- W2767895699 hasConceptScore W2767895699C22324862 @default.
- W2767895699 hasConceptScore W2767895699C28826006 @default.
- W2767895699 hasConceptScore W2767895699C33923547 @default.
- W2767895699 hasConceptScore W2767895699C34388435 @default.
- W2767895699 hasConceptScore W2767895699C71134354 @default.
- W2767895699 hasLocation W27678956991 @default.
- W2767895699 hasOpenAccess W2767895699 @default.
- W2767895699 hasPrimaryLocation W27678956991 @default.
- W2767895699 hasRelatedWork W1496456676 @default.
- W2767895699 hasRelatedWork W1587450254 @default.
- W2767895699 hasRelatedWork W2020929440 @default.
- W2767895699 hasRelatedWork W2169870512 @default.
- W2767895699 hasRelatedWork W2767895699 @default.
- W2767895699 hasRelatedWork W2888986782 @default.
- W2767895699 hasRelatedWork W2952315891 @default.
- W2767895699 hasRelatedWork W3110763182 @default.
- W2767895699 hasRelatedWork W3138935769 @default.
- W2767895699 hasRelatedWork W4283009358 @default.
- W2767895699 isParatext "false" @default.
- W2767895699 isRetracted "false" @default.
- W2767895699 magId "2767895699" @default.
- W2767895699 workType "article" @default.