Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767905653> ?p ?o ?g. }
- W2767905653 abstract "In order to understand the mechanisms underlying stress responses, meta-analysis of transcriptome is made to identify differentially expressed genes (DEGs) and their biological, molecular and cellular mechanisms in response to stressors. The present study is aimed at identifying the effect of abiotic and biotic stress factors, and it is found that several stress responsive genes are common for both abiotic and biotic stress factors in zebrafish. The meta-analysis of micro-array studies revealed that almost 4.7% i.e., 108 common DEGs are differentially regulated between abiotic and biotic stresses. This shows that there is a global coordination and fine-tuning of gene regulation in response to these two types of challenges. We also performed dimension reduction methods, principal component analysis, and partial least squares discriminant analysis which are able to segregate abiotic and biotic stresses into separate entities. The supervised machine learning model, recursive-support vector machine, could classify abiotic and biotic stresses with 100% accuracy using a subset of DEGs. Beside these methods, the random forests decision tree model classified five out of 8 stress conditions with high accuracy. Finally, Functional enrichment analysis revealed the different gene ontology terms, transcription factors and miRNAs factors in the regulation of stress responses." @default.
- W2767905653 created "2017-11-17" @default.
- W2767905653 creator A5003226146 @default.
- W2767905653 creator A5028692004 @default.
- W2767905653 creator A5029875440 @default.
- W2767905653 creator A5058280955 @default.
- W2767905653 creator A5066794192 @default.
- W2767905653 date "2018-03-01" @default.
- W2767905653 modified "2023-10-16" @default.
- W2767905653 title "Effect of abiotic and biotic stress factors analysis using machine learning methods in zebrafish" @default.
- W2767905653 cites W1520812622 @default.
- W2767905653 cites W153140750 @default.
- W2767905653 cites W1695894247 @default.
- W2767905653 cites W1697354316 @default.
- W2767905653 cites W1882422088 @default.
- W2767905653 cites W1894857723 @default.
- W2767905653 cites W1921244768 @default.
- W2767905653 cites W1967444696 @default.
- W2767905653 cites W1967464963 @default.
- W2767905653 cites W1969913835 @default.
- W2767905653 cites W1976327004 @default.
- W2767905653 cites W1976828836 @default.
- W2767905653 cites W1981422933 @default.
- W2767905653 cites W1981842195 @default.
- W2767905653 cites W1983103127 @default.
- W2767905653 cites W1988057110 @default.
- W2767905653 cites W1990185346 @default.
- W2767905653 cites W1994462451 @default.
- W2767905653 cites W1995695629 @default.
- W2767905653 cites W1996201543 @default.
- W2767905653 cites W1998666715 @default.
- W2767905653 cites W1999294768 @default.
- W2767905653 cites W2004273538 @default.
- W2767905653 cites W2004677323 @default.
- W2767905653 cites W2006920619 @default.
- W2767905653 cites W2014960445 @default.
- W2767905653 cites W2015053255 @default.
- W2767905653 cites W2018706778 @default.
- W2767905653 cites W2025088721 @default.
- W2767905653 cites W2027746191 @default.
- W2767905653 cites W2035421116 @default.
- W2767905653 cites W2041811331 @default.
- W2767905653 cites W2043185568 @default.
- W2767905653 cites W2045959886 @default.
- W2767905653 cites W2049215831 @default.
- W2767905653 cites W2050514402 @default.
- W2767905653 cites W2050607994 @default.
- W2767905653 cites W2060861660 @default.
- W2767905653 cites W2063236831 @default.
- W2767905653 cites W2069591064 @default.
- W2767905653 cites W2074063169 @default.
- W2767905653 cites W2075406901 @default.
- W2767905653 cites W2078940093 @default.
- W2767905653 cites W2082168606 @default.
- W2767905653 cites W2083822954 @default.
- W2767905653 cites W2097529328 @default.
- W2767905653 cites W2098022615 @default.
- W2767905653 cites W2104130148 @default.
- W2767905653 cites W2108399976 @default.
- W2767905653 cites W2108728387 @default.
- W2767905653 cites W2110065044 @default.
- W2767905653 cites W2111611237 @default.
- W2767905653 cites W2113847878 @default.
- W2767905653 cites W2114980338 @default.
- W2767905653 cites W2116634113 @default.
- W2767905653 cites W2120865735 @default.
- W2767905653 cites W2124267928 @default.
- W2767905653 cites W2124911115 @default.
- W2767905653 cites W2125310307 @default.
- W2767905653 cites W2125341725 @default.
- W2767905653 cites W2128034264 @default.
- W2767905653 cites W2131165447 @default.
- W2767905653 cites W2131549136 @default.
- W2767905653 cites W2131632095 @default.
- W2767905653 cites W2134458296 @default.
- W2767905653 cites W2150415139 @default.
- W2767905653 cites W2156406354 @default.
- W2767905653 cites W2159096710 @default.
- W2767905653 cites W2159675211 @default.
- W2767905653 cites W2165130891 @default.
- W2767905653 cites W2170449464 @default.
- W2767905653 cites W2171030481 @default.
- W2767905653 cites W2206745025 @default.
- W2767905653 cites W2276520578 @default.
- W2767905653 cites W2412463815 @default.
- W2767905653 cites W2521942709 @default.
- W2767905653 cites W2589958913 @default.
- W2767905653 cites W3147150485 @default.
- W2767905653 cites W50162588 @default.
- W2767905653 doi "https://doi.org/10.1016/j.cbd.2017.10.005" @default.
- W2767905653 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29156228" @default.
- W2767905653 hasPublicationYear "2018" @default.
- W2767905653 type Work @default.
- W2767905653 sameAs 2767905653 @default.
- W2767905653 citedByCount "1" @default.
- W2767905653 countsByYear W27679056532018 @default.
- W2767905653 crossrefType "journal-article" @default.
- W2767905653 hasAuthorship W2767905653A5003226146 @default.
- W2767905653 hasAuthorship W2767905653A5028692004 @default.
- W2767905653 hasAuthorship W2767905653A5029875440 @default.