Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767932261> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2767932261 abstract "We present SIBIA (Scalable Integrated Biophysics-based Image Analysis), a framework for coupling biophysical models with medical image analysis. It provides solvers for an image-driven inverse brain tumor growth model and an image registration problem, the combination of which can eventually help in diagnosis and prognosis of brain tumors. The two main computational kernels of SIBIA are a Fast Fourier Transformation (FFT) implemented in the library AccFFT to discretize differential operators, and a cubic interpolation kernel for semi-Lagrangian based advection. We present efficiency and scalability results for the computational kernels, the inverse tumor solver and image registration on two x86 systems, Lonestar 5 at the Texas Advanced Computing Center and Hazel Hen at the Stuttgart High Performance Computing Center. We showcase results that demonstrate that our solver can be used to solve registration problems of unprecedented scale, 40963 resulting in ∼ 200 billion unknowns---a problem size that is 64X larger than the state-of-the-art. For problem sizes of clinical interest, SIBIA is about 8X faster than the state-of-the-art." @default.
- W2767932261 created "2017-11-17" @default.
- W2767932261 creator A5011451324 @default.
- W2767932261 creator A5017333493 @default.
- W2767932261 creator A5044137409 @default.
- W2767932261 creator A5051660675 @default.
- W2767932261 creator A5070987734 @default.
- W2767932261 creator A5073056338 @default.
- W2767932261 date "2017-11-12" @default.
- W2767932261 modified "2023-09-25" @default.
- W2767932261 title "A framework for scalable biophysics-based image analysis" @default.
- W2767932261 cites W1566255995 @default.
- W2767932261 cites W1641498739 @default.
- W2767932261 cites W1723524309 @default.
- W2767932261 cites W1963605855 @default.
- W2767932261 cites W1963825970 @default.
- W2767932261 cites W1969922802 @default.
- W2767932261 cites W1990245134 @default.
- W2767932261 cites W2000376553 @default.
- W2767932261 cites W2012205781 @default.
- W2767932261 cites W2024524081 @default.
- W2767932261 cites W2030017300 @default.
- W2767932261 cites W2037316890 @default.
- W2767932261 cites W2048369486 @default.
- W2767932261 cites W2050687114 @default.
- W2767932261 cites W2051820877 @default.
- W2767932261 cites W2055577088 @default.
- W2767932261 cites W2059925335 @default.
- W2767932261 cites W2067470376 @default.
- W2767932261 cites W2078708982 @default.
- W2767932261 cites W2090808267 @default.
- W2767932261 cites W2104572044 @default.
- W2767932261 cites W2113446415 @default.
- W2767932261 cites W2115167851 @default.
- W2767932261 cites W2123498585 @default.
- W2767932261 cites W2124257562 @default.
- W2767932261 cites W2130257210 @default.
- W2767932261 cites W2138328476 @default.
- W2767932261 cites W2140980608 @default.
- W2767932261 cites W2143941386 @default.
- W2767932261 cites W2145804351 @default.
- W2767932261 cites W2146865853 @default.
- W2767932261 cites W2147938585 @default.
- W2767932261 cites W2157358125 @default.
- W2767932261 cites W2160905891 @default.
- W2767932261 cites W2161543607 @default.
- W2767932261 cites W2168231032 @default.
- W2767932261 cites W2170167891 @default.
- W2767932261 cites W2178072147 @default.
- W2767932261 cites W2963756161 @default.
- W2767932261 cites W3100638867 @default.
- W2767932261 cites W3102487335 @default.
- W2767932261 cites W433418221 @default.
- W2767932261 cites W46507908 @default.
- W2767932261 doi "https://doi.org/10.1145/3126908.3126930" @default.
- W2767932261 hasPublicationYear "2017" @default.
- W2767932261 type Work @default.
- W2767932261 sameAs 2767932261 @default.
- W2767932261 citedByCount "8" @default.
- W2767932261 countsByYear W27679322612018 @default.
- W2767932261 countsByYear W27679322612019 @default.
- W2767932261 countsByYear W27679322612020 @default.
- W2767932261 countsByYear W27679322612021 @default.
- W2767932261 crossrefType "proceedings-article" @default.
- W2767932261 hasAuthorship W2767932261A5011451324 @default.
- W2767932261 hasAuthorship W2767932261A5017333493 @default.
- W2767932261 hasAuthorship W2767932261A5044137409 @default.
- W2767932261 hasAuthorship W2767932261A5051660675 @default.
- W2767932261 hasAuthorship W2767932261A5070987734 @default.
- W2767932261 hasAuthorship W2767932261A5073056338 @default.
- W2767932261 hasBestOaLocation W27679322612 @default.
- W2767932261 hasConcept C115961682 @default.
- W2767932261 hasConcept C154945302 @default.
- W2767932261 hasConcept C41008148 @default.
- W2767932261 hasConcept C48044578 @default.
- W2767932261 hasConcept C77088390 @default.
- W2767932261 hasConceptScore W2767932261C115961682 @default.
- W2767932261 hasConceptScore W2767932261C154945302 @default.
- W2767932261 hasConceptScore W2767932261C41008148 @default.
- W2767932261 hasConceptScore W2767932261C48044578 @default.
- W2767932261 hasConceptScore W2767932261C77088390 @default.
- W2767932261 hasLocation W27679322611 @default.
- W2767932261 hasLocation W27679322612 @default.
- W2767932261 hasOpenAccess W2767932261 @default.
- W2767932261 hasPrimaryLocation W27679322611 @default.
- W2767932261 hasRelatedWork W1525643724 @default.
- W2767932261 hasRelatedWork W1527726406 @default.
- W2767932261 hasRelatedWork W1597381735 @default.
- W2767932261 hasRelatedWork W1976363619 @default.
- W2767932261 hasRelatedWork W2302028273 @default.
- W2767932261 hasRelatedWork W2364921833 @default.
- W2767932261 hasRelatedWork W2382623646 @default.
- W2767932261 hasRelatedWork W2388030554 @default.
- W2767932261 hasRelatedWork W2595032667 @default.
- W2767932261 hasRelatedWork W3087771547 @default.
- W2767932261 isParatext "false" @default.
- W2767932261 isRetracted "false" @default.
- W2767932261 magId "2767932261" @default.
- W2767932261 workType "article" @default.