Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767949190> ?p ?o ?g. }
- W2767949190 endingPage "20" @default.
- W2767949190 startingPage "20" @default.
- W2767949190 abstract "Real-time prediction of the state of complex systems is vital for integrity management since it is easier to plan for asset maintenance, reduce risks associated with unplanned downtime and reduce the cost of maintenance. This study utilized a four-fold cross-validation ensemble for an Artificial Neural Network (ANN) that used Multi-Layer Perceptron (MLP) in a backward propagation technique for haul crane prognosis. Big data on components’ degradation states obtained from the Supervisory Control And Data Acquisition (SCADA) systems were used to implement the study. After preprocessing the dataset, importance scoring was used to compute the Cumulative Target-component Percentage-influence (CTP) of the input variables (source components) on the output variable (the target component) at the 95.5%, 99.3%, 99.9% and 100% levels. The specific source components responsible for the CTP levels of the target component were later used for the ANN network training that followed the cross-validation ensemble technique. The cross-validation ensemble ANN technique was also compared to the classic ANN and other machining learning algorithms. Finally, the best-trained cross-validation ensemble ANN network, which was obtained at the 99.9% CTP level, was used for future estimation of the time of failure of the system to enhance planning for the expected maintenance program that will be required at such times." @default.
- W2767949190 created "2017-11-17" @default.
- W2767949190 creator A5034364292 @default.
- W2767949190 date "2017-11-10" @default.
- W2767949190 modified "2023-09-26" @default.
- W2767949190 title "Integrated Big Data Analytics Technique for Real-Time Prognostics, Fault Detection and Identification for Complex Systems" @default.
- W2767949190 cites W1527152867 @default.
- W2767949190 cites W1587395205 @default.
- W2767949190 cites W1840715785 @default.
- W2767949190 cites W1864680547 @default.
- W2767949190 cites W1973062537 @default.
- W2767949190 cites W1978721360 @default.
- W2767949190 cites W1980524980 @default.
- W2767949190 cites W1982275278 @default.
- W2767949190 cites W1988985110 @default.
- W2767949190 cites W2003401575 @default.
- W2767949190 cites W2005305357 @default.
- W2767949190 cites W2007464729 @default.
- W2767949190 cites W2009714434 @default.
- W2767949190 cites W2013640190 @default.
- W2767949190 cites W2028916149 @default.
- W2767949190 cites W2033800551 @default.
- W2767949190 cites W2037411704 @default.
- W2767949190 cites W2046674752 @default.
- W2767949190 cites W2048713300 @default.
- W2767949190 cites W2051196068 @default.
- W2767949190 cites W2064815509 @default.
- W2767949190 cites W2072525556 @default.
- W2767949190 cites W2072572638 @default.
- W2767949190 cites W2087351558 @default.
- W2767949190 cites W2095180434 @default.
- W2767949190 cites W2102621677 @default.
- W2767949190 cites W2107389467 @default.
- W2767949190 cites W2117968786 @default.
- W2767949190 cites W2119960866 @default.
- W2767949190 cites W2126857563 @default.
- W2767949190 cites W2127064699 @default.
- W2767949190 cites W2154830650 @default.
- W2767949190 cites W2163214087 @default.
- W2767949190 cites W2524971546 @default.
- W2767949190 cites W2567360389 @default.
- W2767949190 cites W2594153744 @default.
- W2767949190 cites W2626158806 @default.
- W2767949190 cites W2724349242 @default.
- W2767949190 doi "https://doi.org/10.3390/infrastructures2040020" @default.
- W2767949190 hasPublicationYear "2017" @default.
- W2767949190 type Work @default.
- W2767949190 sameAs 2767949190 @default.
- W2767949190 citedByCount "1" @default.
- W2767949190 countsByYear W27679491902020 @default.
- W2767949190 crossrefType "journal-article" @default.
- W2767949190 hasAuthorship W2767949190A5034364292 @default.
- W2767949190 hasBestOaLocation W27679491901 @default.
- W2767949190 hasConcept C113863187 @default.
- W2767949190 hasConcept C119599485 @default.
- W2767949190 hasConcept C119857082 @default.
- W2767949190 hasConcept C121332964 @default.
- W2767949190 hasConcept C124101348 @default.
- W2767949190 hasConcept C127413603 @default.
- W2767949190 hasConcept C129364497 @default.
- W2767949190 hasConcept C154945302 @default.
- W2767949190 hasConcept C168167062 @default.
- W2767949190 hasConcept C179717631 @default.
- W2767949190 hasConcept C180591934 @default.
- W2767949190 hasConcept C200601418 @default.
- W2767949190 hasConcept C27181475 @default.
- W2767949190 hasConcept C41008148 @default.
- W2767949190 hasConcept C45942800 @default.
- W2767949190 hasConcept C50644808 @default.
- W2767949190 hasConcept C60908668 @default.
- W2767949190 hasConcept C97355855 @default.
- W2767949190 hasConceptScore W2767949190C113863187 @default.
- W2767949190 hasConceptScore W2767949190C119599485 @default.
- W2767949190 hasConceptScore W2767949190C119857082 @default.
- W2767949190 hasConceptScore W2767949190C121332964 @default.
- W2767949190 hasConceptScore W2767949190C124101348 @default.
- W2767949190 hasConceptScore W2767949190C127413603 @default.
- W2767949190 hasConceptScore W2767949190C129364497 @default.
- W2767949190 hasConceptScore W2767949190C154945302 @default.
- W2767949190 hasConceptScore W2767949190C168167062 @default.
- W2767949190 hasConceptScore W2767949190C179717631 @default.
- W2767949190 hasConceptScore W2767949190C180591934 @default.
- W2767949190 hasConceptScore W2767949190C200601418 @default.
- W2767949190 hasConceptScore W2767949190C27181475 @default.
- W2767949190 hasConceptScore W2767949190C41008148 @default.
- W2767949190 hasConceptScore W2767949190C45942800 @default.
- W2767949190 hasConceptScore W2767949190C50644808 @default.
- W2767949190 hasConceptScore W2767949190C60908668 @default.
- W2767949190 hasConceptScore W2767949190C97355855 @default.
- W2767949190 hasIssue "4" @default.
- W2767949190 hasLocation W27679491901 @default.
- W2767949190 hasOpenAccess W2767949190 @default.
- W2767949190 hasPrimaryLocation W27679491901 @default.
- W2767949190 hasRelatedWork W2750664433 @default.
- W2767949190 hasRelatedWork W2767949190 @default.
- W2767949190 hasRelatedWork W2783038087 @default.
- W2767949190 hasRelatedWork W3120965611 @default.
- W2767949190 hasRelatedWork W3185179407 @default.