Matches in SemOpenAlex for { <https://semopenalex.org/work/W2767969013> ?p ?o ?g. }
- W2767969013 abstract "Abstract Prostate cancer (PCa) is a major cause of death since ancient time documented in Egyptian Ptolemaic mummy imaging. PCa detection is critical to personalized medicine and varies considerably under an MRI scan. 172 patients with 2,602 morphologic images (axial 2D T2-weighted imaging) of the prostate were obtained. A deep learning with deep convolutional neural network (DCNN) and a non-deep learning with SIFT image feature and bag-of-word (BoW), a representative method for image recognition and analysis, were used to distinguish pathologically confirmed PCa patients from prostate benign conditions (BCs) patients with prostatitis or prostate benign hyperplasia (BPH). In fully automated detection of PCa patients, deep learning had a statistically higher area under the receiver operating characteristics curve (AUC) than non-deep learning ( P = 0.0007 < 0.001). The AUCs were 0.84 (95% CI 0.78–0.89) for deep learning method and 0.70 (95% CI 0.63–0.77) for non-deep learning method, respectively. Our results suggest that deep learning with DCNN is superior to non-deep learning with SIFT image feature and BoW model for fully automated PCa patients differentiation from prostate BCs patients. Our deep learning method is extensible to image modalities such as MR imaging, CT and PET of other organs." @default.
- W2767969013 created "2017-11-17" @default.
- W2767969013 creator A5003871065 @default.
- W2767969013 creator A5037191476 @default.
- W2767969013 creator A5044954885 @default.
- W2767969013 creator A5053722464 @default.
- W2767969013 creator A5077944878 @default.
- W2767969013 creator A5078739680 @default.
- W2767969013 creator A5080309611 @default.
- W2767969013 creator A5084584527 @default.
- W2767969013 creator A5084779086 @default.
- W2767969013 creator A5085515565 @default.
- W2767969013 creator A5086664647 @default.
- W2767969013 date "2017-11-13" @default.
- W2767969013 modified "2023-10-16" @default.
- W2767969013 title "Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning" @default.
- W2767969013 cites W1651586605 @default.
- W2767969013 cites W1827911007 @default.
- W2767969013 cites W1908704137 @default.
- W2767969013 cites W1917894041 @default.
- W2767969013 cites W1930022747 @default.
- W2767969013 cites W1966385142 @default.
- W2767969013 cites W1969959732 @default.
- W2767969013 cites W1972498024 @default.
- W2767969013 cites W2081626829 @default.
- W2767969013 cites W2160738726 @default.
- W2767969013 cites W2307535535 @default.
- W2767969013 cites W2312404985 @default.
- W2767969013 cites W2323200062 @default.
- W2767969013 cites W2323929895 @default.
- W2767969013 cites W2324938769 @default.
- W2767969013 cites W2341106171 @default.
- W2767969013 cites W2413582275 @default.
- W2767969013 cites W2509685700 @default.
- W2767969013 cites W2525157777 @default.
- W2767969013 cites W2526514768 @default.
- W2767969013 cites W2530279937 @default.
- W2767969013 cites W2533800772 @default.
- W2767969013 cites W2534299759 @default.
- W2767969013 cites W2551562422 @default.
- W2767969013 cites W2557738935 @default.
- W2767969013 cites W2559553341 @default.
- W2767969013 cites W2565113203 @default.
- W2767969013 cites W2570618306 @default.
- W2767969013 cites W2575657035 @default.
- W2767969013 cites W2578452911 @default.
- W2767969013 cites W2586386444 @default.
- W2767969013 cites W2588978745 @default.
- W2767969013 cites W2592765733 @default.
- W2767969013 cites W2611902073 @default.
- W2767969013 cites W2726102591 @default.
- W2767969013 cites W3104085283 @default.
- W2767969013 doi "https://doi.org/10.1038/s41598-017-15720-y" @default.
- W2767969013 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5684419" @default.
- W2767969013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29133818" @default.
- W2767969013 hasPublicationYear "2017" @default.
- W2767969013 type Work @default.
- W2767969013 sameAs 2767969013 @default.
- W2767969013 citedByCount "126" @default.
- W2767969013 countsByYear W27679690132018 @default.
- W2767969013 countsByYear W27679690132019 @default.
- W2767969013 countsByYear W27679690132020 @default.
- W2767969013 countsByYear W27679690132021 @default.
- W2767969013 countsByYear W27679690132022 @default.
- W2767969013 countsByYear W27679690132023 @default.
- W2767969013 crossrefType "journal-article" @default.
- W2767969013 hasAuthorship W2767969013A5003871065 @default.
- W2767969013 hasAuthorship W2767969013A5037191476 @default.
- W2767969013 hasAuthorship W2767969013A5044954885 @default.
- W2767969013 hasAuthorship W2767969013A5053722464 @default.
- W2767969013 hasAuthorship W2767969013A5077944878 @default.
- W2767969013 hasAuthorship W2767969013A5078739680 @default.
- W2767969013 hasAuthorship W2767969013A5080309611 @default.
- W2767969013 hasAuthorship W2767969013A5084584527 @default.
- W2767969013 hasAuthorship W2767969013A5084779086 @default.
- W2767969013 hasAuthorship W2767969013A5085515565 @default.
- W2767969013 hasAuthorship W2767969013A5086664647 @default.
- W2767969013 hasBestOaLocation W27679690131 @default.
- W2767969013 hasConcept C108583219 @default.
- W2767969013 hasConcept C119857082 @default.
- W2767969013 hasConcept C121608353 @default.
- W2767969013 hasConcept C126322002 @default.
- W2767969013 hasConcept C126838900 @default.
- W2767969013 hasConcept C138885662 @default.
- W2767969013 hasConcept C143409427 @default.
- W2767969013 hasConcept C153180895 @default.
- W2767969013 hasConcept C154945302 @default.
- W2767969013 hasConcept C2776235491 @default.
- W2767969013 hasConcept C2776401178 @default.
- W2767969013 hasConcept C2780192828 @default.
- W2767969013 hasConcept C2780524745 @default.
- W2767969013 hasConcept C41008148 @default.
- W2767969013 hasConcept C41895202 @default.
- W2767969013 hasConcept C58471807 @default.
- W2767969013 hasConcept C71924100 @default.
- W2767969013 hasConcept C81363708 @default.
- W2767969013 hasConceptScore W2767969013C108583219 @default.
- W2767969013 hasConceptScore W2767969013C119857082 @default.
- W2767969013 hasConceptScore W2767969013C121608353 @default.
- W2767969013 hasConceptScore W2767969013C126322002 @default.