Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768035349> ?p ?o ?g. }
- W2768035349 endingPage "043002" @default.
- W2768035349 startingPage "043002" @default.
- W2768035349 abstract "In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field." @default.
- W2768035349 created "2017-11-17" @default.
- W2768035349 creator A5023302612 @default.
- W2768035349 date "2017-12-22" @default.
- W2768035349 modified "2023-09-29" @default.
- W2768035349 title "Machine learning and data science in soft materials engineering" @default.
- W2768035349 cites W102487131 @default.
- W2768035349 cites W1549386224 @default.
- W2768035349 cites W1570643690 @default.
- W2768035349 cites W1587559447 @default.
- W2768035349 cites W1596717185 @default.
- W2768035349 cites W1608731182 @default.
- W2768035349 cites W1609061715 @default.
- W2768035349 cites W1826576703 @default.
- W2768035349 cites W1834070694 @default.
- W2768035349 cites W1898130445 @default.
- W2768035349 cites W1964357740 @default.
- W2768035349 cites W1964557084 @default.
- W2768035349 cites W1965555277 @default.
- W2768035349 cites W1967054814 @default.
- W2768035349 cites W1969696351 @default.
- W2768035349 cites W1969758109 @default.
- W2768035349 cites W1970789124 @default.
- W2768035349 cites W1971725855 @default.
- W2768035349 cites W1972265435 @default.
- W2768035349 cites W1973460506 @default.
- W2768035349 cites W1973858913 @default.
- W2768035349 cites W1974619687 @default.
- W2768035349 cites W1975964493 @default.
- W2768035349 cites W1976301815 @default.
- W2768035349 cites W1979762151 @default.
- W2768035349 cites W1979769287 @default.
- W2768035349 cites W1982141259 @default.
- W2768035349 cites W1984391316 @default.
- W2768035349 cites W1984493861 @default.
- W2768035349 cites W1985459617 @default.
- W2768035349 cites W1986670239 @default.
- W2768035349 cites W1987236926 @default.
- W2768035349 cites W1989544083 @default.
- W2768035349 cites W1989861156 @default.
- W2768035349 cites W1989998611 @default.
- W2768035349 cites W1994807229 @default.
- W2768035349 cites W1995412010 @default.
- W2768035349 cites W1997152791 @default.
- W2768035349 cites W1998064689 @default.
- W2768035349 cites W1998239582 @default.
- W2768035349 cites W1998601156 @default.
- W2768035349 cites W1999643296 @default.
- W2768035349 cites W2000290293 @default.
- W2768035349 cites W2001771035 @default.
- W2768035349 cites W2001773296 @default.
- W2768035349 cites W2002924489 @default.
- W2768035349 cites W2006554089 @default.
- W2768035349 cites W2008545402 @default.
- W2768035349 cites W2009195969 @default.
- W2768035349 cites W2021157069 @default.
- W2768035349 cites W2023313300 @default.
- W2768035349 cites W2023531363 @default.
- W2768035349 cites W2023771143 @default.
- W2768035349 cites W2024213521 @default.
- W2768035349 cites W2025606200 @default.
- W2768035349 cites W2026380129 @default.
- W2768035349 cites W2026737855 @default.
- W2768035349 cites W2027731040 @default.
- W2768035349 cites W2028601571 @default.
- W2768035349 cites W2029667189 @default.
- W2768035349 cites W2036479410 @default.
- W2768035349 cites W2036631859 @default.
- W2768035349 cites W2038102635 @default.
- W2768035349 cites W2039014440 @default.
- W2768035349 cites W2039631289 @default.
- W2768035349 cites W2040188179 @default.
- W2768035349 cites W2040837725 @default.
- W2768035349 cites W2046134642 @default.
- W2768035349 cites W2046246847 @default.
- W2768035349 cites W2048621586 @default.
- W2768035349 cites W2049725266 @default.
- W2768035349 cites W2050871371 @default.
- W2768035349 cites W2050895876 @default.
- W2768035349 cites W2053874495 @default.
- W2768035349 cites W2054602599 @default.
- W2768035349 cites W2054762683 @default.
- W2768035349 cites W2056124433 @default.
- W2768035349 cites W2056211671 @default.
- W2768035349 cites W2056780622 @default.
- W2768035349 cites W2057706355 @default.
- W2768035349 cites W2059180412 @default.
- W2768035349 cites W2060174126 @default.
- W2768035349 cites W2060261315 @default.
- W2768035349 cites W2063935375 @default.
- W2768035349 cites W2065281489 @default.
- W2768035349 cites W2066373790 @default.
- W2768035349 cites W2067243612 @default.
- W2768035349 cites W2069507241 @default.
- W2768035349 cites W2070875588 @default.
- W2768035349 cites W2071199354 @default.
- W2768035349 cites W2071702602 @default.
- W2768035349 cites W2072217040 @default.