Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768132417> ?p ?o ?g. }
- W2768132417 endingPage "342" @default.
- W2768132417 startingPage "333" @default.
- W2768132417 abstract "• Combine both optimal cavity size and wettability modification to enhance pool boiling. • Enlarging the size of dendrites on the pore wall is the priority wettability modification. • The modified sample has lower interface energy making it easier for bubbles to depart. • The heat transfer coefficient can be as high as 30 W cm −2 K −1 . Boiling heat transfer is widely used in industry and in daily life and it can be enhanced by micro/nano surface modification. Herein, we study the pool boiling characteristics of the micro nano bi-porous copper surface with optimal cavity size from other researchers and present an efficient way to further enhance its boiling heat transfer performance by wettability modification of enlarging the particle size to lower the surface energy. In this work, two micro nano bi-porous copper surface samples were prepared and compared with conventional surfaces. One is the original micro nano bi-porous copper surface (Sample#O) prepared using the hydrogen bubble template deposition method to form abundant pores in optimal cavity size, and the other one is the modified micro nano bi-porous copper surface (Sample#M) that is modified by applying a low current density on Sample#O for a few minutes. Scanning Electron Microscope (SEM) images show that Sample#M keeps the pore size but enlarges the nano dendrite on the top of pore wall to micro balls. The conducted pool boiling experiments indicate that both micro nano bi-porous copper surfaces have superior heat transfer coefficients than the plain copper surface, and the high-speed camera shows that the micro nano bi-porous copper surfaces have shorter bubble growth periods than those surfaces with pure nano structure or pure micro structure. At a heat flux of 90 W cm −2 , the heat transfer coefficient of Sample#O is 13 W cm −2 K −1 , which is 2.8 times over that of the plain surface. Compared to Sample#O, Sample#M can further enhance the pool boiling heat transfer. At the same heat flux of about 90 W cm −2 , the heat transfer coefficient of Sample#M is 23 W cm −2 K −1 , which is 1.7 times over that of Sample#O and 4.8 times over that of the plain surface. The heat transfer coefficient of Sample#M can be as high as 30 W cm −2 K −1 when it reaches the CHF. High-speed camera images show that highest bubble growth period for Sample#M is just less than 20 ms, which is shorter than that of Sample#O having a value in between 20 ms and 40 ms. It confirms that Sample#M after wettability modification has a lower interface energy which can accelerate the bubbles departure, and has an even more superior heat transfer performance than Sample#O." @default.
- W2768132417 created "2017-12-04" @default.
- W2768132417 creator A5020551887 @default.
- W2768132417 creator A5055054564 @default.
- W2768132417 creator A5057488270 @default.
- W2768132417 creator A5067195383 @default.
- W2768132417 creator A5077973398 @default.
- W2768132417 date "2018-04-01" @default.
- W2768132417 modified "2023-10-13" @default.
- W2768132417 title "Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure" @default.
- W2768132417 cites W1141880624 @default.
- W2768132417 cites W1490797610 @default.
- W2768132417 cites W1971085701 @default.
- W2768132417 cites W1975490089 @default.
- W2768132417 cites W1975684947 @default.
- W2768132417 cites W1982635811 @default.
- W2768132417 cites W1992609570 @default.
- W2768132417 cites W2011077197 @default.
- W2768132417 cites W2011271332 @default.
- W2768132417 cites W2011655188 @default.
- W2768132417 cites W2019805662 @default.
- W2768132417 cites W2026035935 @default.
- W2768132417 cites W2027468931 @default.
- W2768132417 cites W2029405394 @default.
- W2768132417 cites W2032319870 @default.
- W2768132417 cites W2035881996 @default.
- W2768132417 cites W2037813456 @default.
- W2768132417 cites W2042998367 @default.
- W2768132417 cites W2043991877 @default.
- W2768132417 cites W2048134317 @default.
- W2768132417 cites W2048692652 @default.
- W2768132417 cites W2048763575 @default.
- W2768132417 cites W2062437445 @default.
- W2768132417 cites W2073652868 @default.
- W2768132417 cites W2074042048 @default.
- W2768132417 cites W2092866291 @default.
- W2768132417 cites W2095350422 @default.
- W2768132417 cites W2107311113 @default.
- W2768132417 cites W2112850114 @default.
- W2768132417 cites W2112991057 @default.
- W2768132417 cites W2140519257 @default.
- W2768132417 cites W2167971920 @default.
- W2768132417 cites W2222553848 @default.
- W2768132417 cites W2311501585 @default.
- W2768132417 cites W2324962500 @default.
- W2768132417 cites W2416572161 @default.
- W2768132417 cites W2557417621 @default.
- W2768132417 cites W2619579193 @default.
- W2768132417 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.080" @default.
- W2768132417 hasPublicationYear "2018" @default.
- W2768132417 type Work @default.
- W2768132417 sameAs 2768132417 @default.
- W2768132417 citedByCount "107" @default.
- W2768132417 countsByYear W27681324172018 @default.
- W2768132417 countsByYear W27681324172019 @default.
- W2768132417 countsByYear W27681324172020 @default.
- W2768132417 countsByYear W27681324172021 @default.
- W2768132417 countsByYear W27681324172022 @default.
- W2768132417 countsByYear W27681324172023 @default.
- W2768132417 crossrefType "journal-article" @default.
- W2768132417 hasAuthorship W2768132417A5020551887 @default.
- W2768132417 hasAuthorship W2768132417A5055054564 @default.
- W2768132417 hasAuthorship W2768132417A5057488270 @default.
- W2768132417 hasAuthorship W2768132417A5067195383 @default.
- W2768132417 hasAuthorship W2768132417A5077973398 @default.
- W2768132417 hasBestOaLocation W27681324171 @default.
- W2768132417 hasConcept C105569014 @default.
- W2768132417 hasConcept C115537861 @default.
- W2768132417 hasConcept C121332964 @default.
- W2768132417 hasConcept C127413603 @default.
- W2768132417 hasConcept C134514944 @default.
- W2768132417 hasConcept C157777378 @default.
- W2768132417 hasConcept C159985019 @default.
- W2768132417 hasConcept C171250308 @default.
- W2768132417 hasConcept C188596812 @default.
- W2768132417 hasConcept C191897082 @default.
- W2768132417 hasConcept C192562407 @default.
- W2768132417 hasConcept C195839 @default.
- W2768132417 hasConcept C197194406 @default.
- W2768132417 hasConcept C26771246 @default.
- W2768132417 hasConcept C2780357685 @default.
- W2768132417 hasConcept C29700514 @default.
- W2768132417 hasConcept C42360764 @default.
- W2768132417 hasConcept C50517652 @default.
- W2768132417 hasConcept C544778455 @default.
- W2768132417 hasConcept C6556556 @default.
- W2768132417 hasConcept C6648577 @default.
- W2768132417 hasConcept C97355855 @default.
- W2768132417 hasConceptScore W2768132417C105569014 @default.
- W2768132417 hasConceptScore W2768132417C115537861 @default.
- W2768132417 hasConceptScore W2768132417C121332964 @default.
- W2768132417 hasConceptScore W2768132417C127413603 @default.
- W2768132417 hasConceptScore W2768132417C134514944 @default.
- W2768132417 hasConceptScore W2768132417C157777378 @default.
- W2768132417 hasConceptScore W2768132417C159985019 @default.
- W2768132417 hasConceptScore W2768132417C171250308 @default.
- W2768132417 hasConceptScore W2768132417C188596812 @default.
- W2768132417 hasConceptScore W2768132417C191897082 @default.