Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768305371> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2768305371 abstract "Due to the influence of indoor signal multipath effect and human disturbance, the indoor positioning technology of WiFi fingerprint based on deep learning is poor stability. The large sample and accurate data in the room is very difficult to collect for weights training of deep learning, so it is difficult to be widely used. Firstly, the innovative algorithm with multi-sensor fingerprint and deep learning for indoor position (DL-IMPS) is puts forward, and used the statistical model and the ray tracing method to construct a large sample data for weights training, the experiment is proved that the model data of WiFi-RSSI is a subset of the actual measurement data. Secondly, 10.9m×7.4m indoor location test environment is set up in the room, through 9700 groups of modeling data and 1300 groups of measurement data to train DBN's weights, it get more optimal weights matrix and speed up the convergence rate. Finally, The performance of WKNN and DL-IMPS is compared under four different paths, The results prove that the average error of DL-IMPS is 0.52 m, the probability of error less than 1 m is 92.3%, but the average error of WKNN is 1.39 m, the probability of error of less than 1m is 45%, Location accuracy and stability of DL-IMPS are superior to WKNN. The other experiment is the comparison between one-sensor indoor location and DL-IMPS, Locating error probability of DL-IMPS is 1%, and the convergence speed is fast, that of WiFi-only is 24%, iBeacon-only is 25%, Geomagnetic-only is 15%, DL-IMPS have better positioning accuracy and robustness." @default.
- W2768305371 created "2017-12-04" @default.
- W2768305371 creator A5013236283 @default.
- W2768305371 creator A5032888897 @default.
- W2768305371 creator A5056532148 @default.
- W2768305371 creator A5091805609 @default.
- W2768305371 date "2017-09-01" @default.
- W2768305371 modified "2023-09-24" @default.
- W2768305371 title "Deep learning for weights training and indoor positioning using multi-sensor fingerprint" @default.
- W2768305371 cites W1973372358 @default.
- W2768305371 cites W1998497571 @default.
- W2768305371 cites W2044846595 @default.
- W2768305371 cites W2100495367 @default.
- W2768305371 cites W2100989187 @default.
- W2768305371 cites W2103365206 @default.
- W2768305371 cites W2109167597 @default.
- W2768305371 cites W2114254062 @default.
- W2768305371 cites W2135394914 @default.
- W2768305371 cites W2142516371 @default.
- W2768305371 cites W2143243918 @default.
- W2768305371 cites W2290207474 @default.
- W2768305371 doi "https://doi.org/10.1109/ipin.2017.8115923" @default.
- W2768305371 hasPublicationYear "2017" @default.
- W2768305371 type Work @default.
- W2768305371 sameAs 2768305371 @default.
- W2768305371 citedByCount "26" @default.
- W2768305371 countsByYear W27683053712018 @default.
- W2768305371 countsByYear W27683053712019 @default.
- W2768305371 countsByYear W27683053712020 @default.
- W2768305371 countsByYear W27683053712021 @default.
- W2768305371 countsByYear W27683053712022 @default.
- W2768305371 crossrefType "proceedings-article" @default.
- W2768305371 hasAuthorship W2768305371A5013236283 @default.
- W2768305371 hasAuthorship W2768305371A5032888897 @default.
- W2768305371 hasAuthorship W2768305371A5056532148 @default.
- W2768305371 hasAuthorship W2768305371A5091805609 @default.
- W2768305371 hasConcept C108583219 @default.
- W2768305371 hasConcept C112972136 @default.
- W2768305371 hasConcept C119857082 @default.
- W2768305371 hasConcept C153180895 @default.
- W2768305371 hasConcept C154945302 @default.
- W2768305371 hasConcept C162324750 @default.
- W2768305371 hasConcept C168406668 @default.
- W2768305371 hasConcept C185592680 @default.
- W2768305371 hasConcept C198531522 @default.
- W2768305371 hasConcept C24590314 @default.
- W2768305371 hasConcept C2777303404 @default.
- W2768305371 hasConcept C2777826928 @default.
- W2768305371 hasConcept C31258907 @default.
- W2768305371 hasConcept C41008148 @default.
- W2768305371 hasConcept C43617362 @default.
- W2768305371 hasConcept C50522688 @default.
- W2768305371 hasConcept C79403827 @default.
- W2768305371 hasConceptScore W2768305371C108583219 @default.
- W2768305371 hasConceptScore W2768305371C112972136 @default.
- W2768305371 hasConceptScore W2768305371C119857082 @default.
- W2768305371 hasConceptScore W2768305371C153180895 @default.
- W2768305371 hasConceptScore W2768305371C154945302 @default.
- W2768305371 hasConceptScore W2768305371C162324750 @default.
- W2768305371 hasConceptScore W2768305371C168406668 @default.
- W2768305371 hasConceptScore W2768305371C185592680 @default.
- W2768305371 hasConceptScore W2768305371C198531522 @default.
- W2768305371 hasConceptScore W2768305371C24590314 @default.
- W2768305371 hasConceptScore W2768305371C2777303404 @default.
- W2768305371 hasConceptScore W2768305371C2777826928 @default.
- W2768305371 hasConceptScore W2768305371C31258907 @default.
- W2768305371 hasConceptScore W2768305371C41008148 @default.
- W2768305371 hasConceptScore W2768305371C43617362 @default.
- W2768305371 hasConceptScore W2768305371C50522688 @default.
- W2768305371 hasConceptScore W2768305371C79403827 @default.
- W2768305371 hasLocation W27683053711 @default.
- W2768305371 hasOpenAccess W2768305371 @default.
- W2768305371 hasPrimaryLocation W27683053711 @default.
- W2768305371 hasRelatedWork W1948266990 @default.
- W2768305371 hasRelatedWork W1995358885 @default.
- W2768305371 hasRelatedWork W2110182821 @default.
- W2768305371 hasRelatedWork W2124383217 @default.
- W2768305371 hasRelatedWork W2140519175 @default.
- W2768305371 hasRelatedWork W2170038768 @default.
- W2768305371 hasRelatedWork W2389470892 @default.
- W2768305371 hasRelatedWork W2738221750 @default.
- W2768305371 hasRelatedWork W2997969508 @default.
- W2768305371 hasRelatedWork W4293863368 @default.
- W2768305371 isParatext "false" @default.
- W2768305371 isRetracted "false" @default.
- W2768305371 magId "2768305371" @default.
- W2768305371 workType "article" @default.