Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768348544> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2768348544 endingPage "1855009" @default.
- W2768348544 startingPage "1855009" @default.
- W2768348544 abstract "In recent decades, magnetic resonance imaging (MRI) has attracted attention in radiation therapy as the only modality. This nontrivial task requires the application of pseudo computed tomography (PCT) generation methods. On the one hand, the electron density information provided by the CT scan is critical for calculating the 3D dose distribution of tissues. On the other hand, the bone image provided by the CT is precise enough for the construction of a radiograph. Lately, the use of MRI/CT has combined all of the soft tissue contrast merits which are contributed by the MRI and the virtue of CT imaging. However, owing to the unbalance of voxel-intensities in the MRI and CT scan, the MRI/CT workflow also has shortcomings. Inspired by the random forest-based PCT estimation, this paper investigated the potential of the 3D group feature as the input of the random forest regression, which is based on the 3D block-matching method, taking the correlated central voxel as the target. Four types of features including the voxel level, sub-regional level, whole cubic level with adaptive weighted conjunction and compressed level were introduced to attain the robust features. The group-based random forest regression was then utilized to obtain the approximated PCT only from corresponding MRI, and the feature is extracted from the 3D cubic MRI patches and mapped to the 3D cubic CT patch, which helps in decreasing the computation difficulty, representing the MR patches into an anatomical feature space. The alternative regression forest was used in solving the regression task for enhancing the prediction power compared with the random forest. The proposed method could efficiently capture the correlation that is observable between the CT as well as the MR images on the basis of the alternative random forest (ARF) with cubic features, and the experimental results show the performance and effectiveness of the proposed method compared with the recent learning-based and atlas-based (AB) methods" @default.
- W2768348544 created "2017-12-04" @default.
- W2768348544 creator A5061993329 @default.
- W2768348544 creator A5082246965 @default.
- W2768348544 date "2018-02-21" @default.
- W2768348544 modified "2023-09-24" @default.
- W2768348544 title "Pseudo CT Generation Based on 3D Group Feature Extraction and Alternative Regression Forest for MRI-Only Radiotherapy" @default.
- W2768348544 cites W1958023642 @default.
- W2768348544 cites W1969750491 @default.
- W2768348544 cites W1980076601 @default.
- W2768348544 cites W2035397698 @default.
- W2768348544 cites W2044967973 @default.
- W2768348544 cites W2049695152 @default.
- W2768348544 cites W2057743740 @default.
- W2768348544 cites W2068231001 @default.
- W2768348544 cites W2103857226 @default.
- W2768348544 cites W2110966329 @default.
- W2768348544 cites W2129812935 @default.
- W2768348544 cites W2142082007 @default.
- W2768348544 cites W2142859438 @default.
- W2768348544 cites W2154346707 @default.
- W2768348544 cites W2171697262 @default.
- W2768348544 cites W2208340121 @default.
- W2768348544 cites W2418786089 @default.
- W2768348544 cites W2513595145 @default.
- W2768348544 doi "https://doi.org/10.1142/s0218001418550091" @default.
- W2768348544 hasPublicationYear "2018" @default.
- W2768348544 type Work @default.
- W2768348544 sameAs 2768348544 @default.
- W2768348544 citedByCount "3" @default.
- W2768348544 countsByYear W27683485442020 @default.
- W2768348544 countsByYear W27683485442021 @default.
- W2768348544 countsByYear W27683485442022 @default.
- W2768348544 crossrefType "journal-article" @default.
- W2768348544 hasAuthorship W2768348544A5061993329 @default.
- W2768348544 hasAuthorship W2768348544A5082246965 @default.
- W2768348544 hasConcept C126838900 @default.
- W2768348544 hasConcept C138885662 @default.
- W2768348544 hasConcept C143409427 @default.
- W2768348544 hasConcept C153180895 @default.
- W2768348544 hasConcept C154945302 @default.
- W2768348544 hasConcept C169258074 @default.
- W2768348544 hasConcept C2776401178 @default.
- W2768348544 hasConcept C41008148 @default.
- W2768348544 hasConcept C41895202 @default.
- W2768348544 hasConcept C52622490 @default.
- W2768348544 hasConcept C54170458 @default.
- W2768348544 hasConcept C71924100 @default.
- W2768348544 hasConceptScore W2768348544C126838900 @default.
- W2768348544 hasConceptScore W2768348544C138885662 @default.
- W2768348544 hasConceptScore W2768348544C143409427 @default.
- W2768348544 hasConceptScore W2768348544C153180895 @default.
- W2768348544 hasConceptScore W2768348544C154945302 @default.
- W2768348544 hasConceptScore W2768348544C169258074 @default.
- W2768348544 hasConceptScore W2768348544C2776401178 @default.
- W2768348544 hasConceptScore W2768348544C41008148 @default.
- W2768348544 hasConceptScore W2768348544C41895202 @default.
- W2768348544 hasConceptScore W2768348544C52622490 @default.
- W2768348544 hasConceptScore W2768348544C54170458 @default.
- W2768348544 hasConceptScore W2768348544C71924100 @default.
- W2768348544 hasFunder F4320321001 @default.
- W2768348544 hasIssue "06" @default.
- W2768348544 hasLocation W27683485441 @default.
- W2768348544 hasOpenAccess W2768348544 @default.
- W2768348544 hasPrimaryLocation W27683485441 @default.
- W2768348544 hasRelatedWork W2016461833 @default.
- W2768348544 hasRelatedWork W2037342633 @default.
- W2768348544 hasRelatedWork W2091724545 @default.
- W2768348544 hasRelatedWork W2146076056 @default.
- W2768348544 hasRelatedWork W2275058042 @default.
- W2768348544 hasRelatedWork W2382607599 @default.
- W2768348544 hasRelatedWork W2811390910 @default.
- W2768348544 hasRelatedWork W2922225723 @default.
- W2768348544 hasRelatedWork W3005023910 @default.
- W2768348544 hasRelatedWork W3197541072 @default.
- W2768348544 hasVolume "32" @default.
- W2768348544 isParatext "false" @default.
- W2768348544 isRetracted "false" @default.
- W2768348544 magId "2768348544" @default.
- W2768348544 workType "article" @default.