Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768429196> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2768429196 abstract "The CLARION Cognitive Architecture: A Tutorial Sebastien Helie (helies@rpi.edu) Cognitive Science Department, Rensselaer Polytechnic Institute 110 Eighth Street, Troy, NY 12180, USA Nick Wilson (wilson3@rpi.edu) Cognitive Science Department, Rensselaer Polytechnic Institute 110 Eighth Street, Troy, NY 12180, USA Ron Sun (rsun@rpi.edu) Cognitive Science Department, Rensselaer Polytechnic Institute 110 Eighth Street, Troy, NY 12180, USA level, implicit associations are learned through gradual trial- and-error learning. In contrast, learning of explicit knowledge is often one-shot and represents the abrupt availability of explicit knowledge (following “explicitation” or through newly acquired linguistic information in the top level). The emphasis on bottom-up learning (i.e., the transformation of implicit knowledge into explicit knowledge) is, in part, what distinguishes CLARION from other cognitive architectures. Nevertheless, top-down learning is also included in CLARION. Abstract This full-day tutorial introduces participants to CLARION, a dual-process/dual-representation cognitive architecture that focuses on the distinction between explicit and implicit cognitive processes. CLARION is also integrative, involving cognition, motivation, metacognition, and so on. This tutorial presents a detailed description, along with many simulations, advanced topics, and formal results. Although some prior exposure to cognitive architectures and artificial neural networks can be helpful, prior understanding of these areas is not required, as the full-day format allows a detailed presentation of basic, as well as advanced, topics related to cognitive modeling using CLARION. This tutorial will enable participants to apply the basic concepts, theories, and computational models of CLARION to their own work. The Action-Centered Subsystem In the Action-Centered Subsystem, the top level contains simple “State AE Action” rules, while the bottom level uses multi-layer perceptrons to associate states and actions. Learning in the bottom level is captured by a reinforcement learning algorithm (with backpropagation), while rule learning in the top level is mostly “one-shot” and can be performed bottom-up or independently. The ACS has been used to model navigation in mine fields (Sun et al., 2001). In addition, because CLARION focuses on the dichotomy between explicit and implicit knowledge, benchmark psychological tasks used to show implicit learning were also successfully captured and explained (Sun et al., 2005). Overview CLARION is a cognitive architecture composed of four main subsystems: the Action-Centered Subsystem (ACS), the Non-Action-Centered Subsystem (NACS), the Meta- Cognitive Subsystem (MCS), and the Motivational Subsystem (MS). The ACS is used mainly for action decision-making. The NACS is usually a slave system to the ACS and is used to store declarative and episodic knowledge. This subsystem is also responsible for reasoning in CLARION. The MS is responsible for determining motivational drive levels (which in turn lead to the setting of goals). The MCS is responsible for cognitive monitoring and parameter setting in both the ACS and NACS, and makes the goal setting determinations based on drive levels reported from the MS. In addition to the aforementioned subsystem structure, CLARION is based on two other basic assumptions: representational differences and learning differences of two different types of knowledge: implicit versus explicit (Sun, Merrill, & Peterson, 2001; Sun, Slusarz, & Terry, 2005). The main difference between these two types of knowledge is accessibility. In each subsystem, the top level contains explicit knowledge (easily accessible) whereas the bottom level contains implicit knowledge (harder to access). The second assumption in CLARION concerns the different learning processes in the top and the bottom level of each subsystem (Sun et al., 2001, 2005). In the bottom The Non-Action-Centered Subsystem In the Non-Action-Centered Subsystem, the top level contains simple logical rules while the bottom level uses a nonlinear neural network. Learning in the bottom level is captured by associative (e.g., contrastive Hebbian) learning. Rule learning in the top level is mostly “one-shot” (similar to the ACS). The NACS in CLARION has been used mainly to simulate reasoning. In particular, CLARION was able to capture data showing the mixed effect of rule-based reasoning and similarity-based reasoning when judging the likelihood/strength of simple deductive forms. Other reasoning phenomena can also be naturally explained using CLARION (e.g., inheritance-based reasoning, reasoning from incomplete information, etc)." @default.
- W2768429196 created "2017-12-04" @default.
- W2768429196 creator A5008043241 @default.
- W2768429196 creator A5021822666 @default.
- W2768429196 creator A5053672295 @default.
- W2768429196 date "2008-01-01" @default.
- W2768429196 modified "2023-09-24" @default.
- W2768429196 title "The CLARION Cognitive Architecture: A Tutorial" @default.
- W2768429196 cites W1577898041 @default.
- W2768429196 cites W1607398859 @default.
- W2768429196 cites W1758863888 @default.
- W2768429196 cites W176903224 @default.
- W2768429196 cites W1979544630 @default.
- W2768429196 cites W1980428832 @default.
- W2768429196 cites W1995167134 @default.
- W2768429196 cites W1997798784 @default.
- W2768429196 cites W1998890282 @default.
- W2768429196 cites W2007189646 @default.
- W2768429196 cites W2031974728 @default.
- W2768429196 cites W2052094276 @default.
- W2768429196 cites W2084611707 @default.
- W2768429196 cites W2095893740 @default.
- W2768429196 cites W2113102527 @default.
- W2768429196 cites W2118710432 @default.
- W2768429196 cites W2160395727 @default.
- W2768429196 cites W2162577226 @default.
- W2768429196 hasPublicationYear "2008" @default.
- W2768429196 type Work @default.
- W2768429196 sameAs 2768429196 @default.
- W2768429196 citedByCount "0" @default.
- W2768429196 crossrefType "journal-article" @default.
- W2768429196 hasAuthorship W2768429196A5008043241 @default.
- W2768429196 hasAuthorship W2768429196A5021822666 @default.
- W2768429196 hasAuthorship W2768429196A5053672295 @default.
- W2768429196 hasConcept C118147538 @default.
- W2768429196 hasConcept C126838900 @default.
- W2768429196 hasConcept C154945302 @default.
- W2768429196 hasConcept C15744967 @default.
- W2768429196 hasConcept C161407221 @default.
- W2768429196 hasConcept C169760540 @default.
- W2768429196 hasConcept C169900460 @default.
- W2768429196 hasConcept C188147891 @default.
- W2768429196 hasConcept C20854674 @default.
- W2768429196 hasConcept C2777601897 @default.
- W2768429196 hasConcept C41008148 @default.
- W2768429196 hasConcept C71924100 @default.
- W2768429196 hasConcept C84857602 @default.
- W2768429196 hasConceptScore W2768429196C118147538 @default.
- W2768429196 hasConceptScore W2768429196C126838900 @default.
- W2768429196 hasConceptScore W2768429196C154945302 @default.
- W2768429196 hasConceptScore W2768429196C15744967 @default.
- W2768429196 hasConceptScore W2768429196C161407221 @default.
- W2768429196 hasConceptScore W2768429196C169760540 @default.
- W2768429196 hasConceptScore W2768429196C169900460 @default.
- W2768429196 hasConceptScore W2768429196C188147891 @default.
- W2768429196 hasConceptScore W2768429196C20854674 @default.
- W2768429196 hasConceptScore W2768429196C2777601897 @default.
- W2768429196 hasConceptScore W2768429196C41008148 @default.
- W2768429196 hasConceptScore W2768429196C71924100 @default.
- W2768429196 hasConceptScore W2768429196C84857602 @default.
- W2768429196 hasIssue "30" @default.
- W2768429196 hasLocation W27684291961 @default.
- W2768429196 hasOpenAccess W2768429196 @default.
- W2768429196 hasPrimaryLocation W27684291961 @default.
- W2768429196 hasRelatedWork W1035775227 @default.
- W2768429196 hasRelatedWork W132806822 @default.
- W2768429196 hasRelatedWork W187352906 @default.
- W2768429196 hasRelatedWork W1990551875 @default.
- W2768429196 hasRelatedWork W2017960570 @default.
- W2768429196 hasRelatedWork W2087699765 @default.
- W2768429196 hasRelatedWork W2440945685 @default.
- W2768429196 hasRelatedWork W2468970066 @default.
- W2768429196 hasRelatedWork W2521733882 @default.
- W2768429196 hasRelatedWork W2552149088 @default.
- W2768429196 hasRelatedWork W2576191184 @default.
- W2768429196 hasRelatedWork W2580747022 @default.
- W2768429196 hasRelatedWork W2581351915 @default.
- W2768429196 hasRelatedWork W2588205344 @default.
- W2768429196 hasRelatedWork W2621541520 @default.
- W2768429196 hasRelatedWork W2621922016 @default.
- W2768429196 hasRelatedWork W2622232467 @default.
- W2768429196 hasRelatedWork W2773055139 @default.
- W2768429196 hasRelatedWork W3094435 @default.
- W2768429196 hasRelatedWork W3198998390 @default.
- W2768429196 hasVolume "30" @default.
- W2768429196 isParatext "false" @default.
- W2768429196 isRetracted "false" @default.
- W2768429196 magId "2768429196" @default.
- W2768429196 workType "article" @default.