Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768486563> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2768486563 endingPage "S1038" @default.
- W2768486563 startingPage "S1038" @default.
- W2768486563 abstract "Models based on Machine Learning (ML) are pervading all fields of science and practical applications, including the problem of forecasting water temperature in lakes, a crucial variable for ecosystems and a proxy of climate change. Here, we review the most used ML algorithms in this field and highlight some physical constraints that should be carefully considered when adopting a black-box approach. To illustrate them, we refer to an artificial case study representing a temperate lake simulated by means of a physically based model, for which we take full control of input and output variables, and restrict the analysis to lake surface water temperature (LSWT). Three main factors are relevant for a successful prediction of LSWT by means of ML models: the choice of the predictors (mostly, meteorological variables), their pre-processing (we tested three approaches), and the specific ML algorithm (nine different algorithms). We show that selecting the suitable physical inputs plays the most important role. In our case study, which is the product of a numerical model and not a real lake, the minimum amount of information that is needed to obtain acceptable results is to consider air temperature (AT) and day of the year. The use of additional predictors does not substantially improve the performances (the relative improvement of RMSE was 7.75% for the test data set). We also demonstrate that better results than the normal case are obtained by either pre-processing air temperature data averaging them over a time window or including values from previous days as inputs in the model. Considering the recent history of the forcing (AT) allows one to comply with the physical fact that the large water mass makes lakes acting as “filters” in their thermal response (thus, influenced also by AT from previous days), which changes depending on the lake’s depth. Eventually, we did not find a definite answer about a single optimal ML algorithm when using the same inputs (although artificial neural network had slightly better results), suggesting that the insight into the physical dynamics is still the most important factor for a successful exploitation of ML." @default.
- W2768486563 created "2017-12-04" @default.
- W2768486563 creator A5031354257 @default.
- W2768486563 creator A5035891580 @default.
- W2768486563 creator A5043525175 @default.
- W2768486563 creator A5065304025 @default.
- W2768486563 date "2017-10-01" @default.
- W2768486563 modified "2023-09-27" @default.
- W2768486563 title "Behind the myths of antipsychotics for delirium prevention: the unbearable lightness of evidence" @default.
- W2768486563 doi "https://doi.org/10.1016/s0924-977x(17)31815-1" @default.
- W2768486563 hasPublicationYear "2017" @default.
- W2768486563 type Work @default.
- W2768486563 sameAs 2768486563 @default.
- W2768486563 citedByCount "0" @default.
- W2768486563 crossrefType "journal-article" @default.
- W2768486563 hasAuthorship W2768486563A5031354257 @default.
- W2768486563 hasAuthorship W2768486563A5035891580 @default.
- W2768486563 hasAuthorship W2768486563A5043525175 @default.
- W2768486563 hasAuthorship W2768486563A5065304025 @default.
- W2768486563 hasConcept C105795698 @default.
- W2768486563 hasConcept C119857082 @default.
- W2768486563 hasConcept C134306372 @default.
- W2768486563 hasConcept C182365436 @default.
- W2768486563 hasConcept C2780148112 @default.
- W2768486563 hasConcept C33923547 @default.
- W2768486563 hasConcept C41008148 @default.
- W2768486563 hasConceptScore W2768486563C105795698 @default.
- W2768486563 hasConceptScore W2768486563C119857082 @default.
- W2768486563 hasConceptScore W2768486563C134306372 @default.
- W2768486563 hasConceptScore W2768486563C182365436 @default.
- W2768486563 hasConceptScore W2768486563C2780148112 @default.
- W2768486563 hasConceptScore W2768486563C33923547 @default.
- W2768486563 hasConceptScore W2768486563C41008148 @default.
- W2768486563 hasLocation W27684865631 @default.
- W2768486563 hasOpenAccess W2768486563 @default.
- W2768486563 hasPrimaryLocation W27684865631 @default.
- W2768486563 hasRelatedWork W1593479910 @default.
- W2768486563 hasRelatedWork W1991658429 @default.
- W2768486563 hasRelatedWork W2096829463 @default.
- W2768486563 hasRelatedWork W2130544840 @default.
- W2768486563 hasRelatedWork W2362569636 @default.
- W2768486563 hasRelatedWork W2367057661 @default.
- W2768486563 hasRelatedWork W2368066043 @default.
- W2768486563 hasRelatedWork W2379805967 @default.
- W2768486563 hasRelatedWork W2390133987 @default.
- W2768486563 hasRelatedWork W2889453578 @default.
- W2768486563 hasVolume "27" @default.
- W2768486563 isParatext "false" @default.
- W2768486563 isRetracted "false" @default.
- W2768486563 magId "2768486563" @default.
- W2768486563 workType "article" @default.