Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768546437> ?p ?o ?g. }
- W2768546437 endingPage "85" @default.
- W2768546437 startingPage "45" @default.
- W2768546437 abstract "Superhydrophobic surfaces can retain gas pockets within their microscale textures when submerged in water. This property reduces direct contact between water and solid surfaces and presents opportunities for improving hydrodynamic performance by decreasing viscous drag. In most realistic applications, however, the flow regime is turbulent and retaining the gas pockets is a challenge. In order to overcome this challenge, it is crucial to develop an understanding of physical mechanisms that can lead to the failure of superhydrophobic surfaces in retaining gas pockets when the overlying liquid flow is turbulent. We present a study of the onset of failure in gas retention by analysing direct numerical simulations (DNS) of turbulent flows over superhydrophobic surfaces coupled with the deformation of air–water interfaces that hold the gas pockets. The superhydrophobic surfaces are modelled as periodic textures with patterned slip and no-slip boundary conditions on the overlying water flow. The liquid–gas interface is modelled via a linearized Young–Laplace equation, which is solved coupled with the overlying turbulent flow. A wide range of texture sizes and interfacial Weber numbers are considered in this study. Our analysis identifies flow-induced upstream-travelling capillary waves that are coherent in the spanwise direction as one mechanism for failure in retention of gas pockets. To confirm physical understanding of these waves, a semianalytical inviscid linear analysis is developed; the wave speeds obtained from the space–time correlations in the DNS data were found to match with the predictions of the semianalytical model. The magnitude of the pressure fluctuations due to these waves was found to increase with decreasing surface tension, and increase with a much stronger dependence on the slip velocity, when all numbers are reported in wall units. Based on a fitted scaling, a threshold criterion for the failure of superhydrophobic surfaces is developed that is based on estimates of the onset condition required for the motion of contact lines. The second contribution of this work is the development of boundary maps that identify stable and unstable zones in a parameter space consisting of working parameter and design parameters including texture size and material contact angle. We provide a brief description of previously identified failure modes of superhydrophobic surfaces, namely the stagnation pressure and shear-driven drainage mechanisms. In an overlay map, the stable and unstable zones due to each mechanism are presented. For various input conditions, we provide scaling laws that identify the most critical mechanism limiting the stability of gas retention by superhydrophobic surfaces." @default.
- W2768546437 created "2017-12-04" @default.
- W2768546437 creator A5018685081 @default.
- W2768546437 creator A5065470171 @default.
- W2768546437 creator A5066321909 @default.
- W2768546437 date "2017-11-27" @default.
- W2768546437 modified "2023-10-06" @default.
- W2768546437 title "Turbulent flows over superhydrophobic surfaces: flow-induced capillary waves, and robustness of air–water interfaces" @default.
- W2768546437 cites W1904528890 @default.
- W2768546437 cites W1921297653 @default.
- W2768546437 cites W1934163631 @default.
- W2768546437 cites W1964424828 @default.
- W2768546437 cites W1973103530 @default.
- W2768546437 cites W1973612065 @default.
- W2768546437 cites W1975140804 @default.
- W2768546437 cites W1979744020 @default.
- W2768546437 cites W1985865600 @default.
- W2768546437 cites W1988979733 @default.
- W2768546437 cites W1990337245 @default.
- W2768546437 cites W1996635149 @default.
- W2768546437 cites W1998651066 @default.
- W2768546437 cites W2000180854 @default.
- W2768546437 cites W2002335991 @default.
- W2768546437 cites W2012489833 @default.
- W2768546437 cites W2020630683 @default.
- W2768546437 cites W2022449266 @default.
- W2768546437 cites W2027869344 @default.
- W2768546437 cites W2030248190 @default.
- W2768546437 cites W2036895361 @default.
- W2768546437 cites W2047798826 @default.
- W2768546437 cites W2052323603 @default.
- W2768546437 cites W2068878301 @default.
- W2768546437 cites W2071458677 @default.
- W2768546437 cites W2072538485 @default.
- W2768546437 cites W2077469325 @default.
- W2768546437 cites W2079443270 @default.
- W2768546437 cites W2083251472 @default.
- W2768546437 cites W2088923751 @default.
- W2768546437 cites W2089565286 @default.
- W2768546437 cites W2090131196 @default.
- W2768546437 cites W2094415885 @default.
- W2768546437 cites W2101887806 @default.
- W2768546437 cites W2109156104 @default.
- W2768546437 cites W2113064266 @default.
- W2768546437 cites W2120824140 @default.
- W2768546437 cites W2123567481 @default.
- W2768546437 cites W2127171099 @default.
- W2768546437 cites W2129233031 @default.
- W2768546437 cites W2131157840 @default.
- W2768546437 cites W2139635022 @default.
- W2768546437 cites W2141016674 @default.
- W2768546437 cites W2146623332 @default.
- W2768546437 cites W2152123134 @default.
- W2768546437 cites W2157073204 @default.
- W2768546437 cites W2167089506 @default.
- W2768546437 cites W2168106086 @default.
- W2768546437 cites W2168865104 @default.
- W2768546437 cites W2209352172 @default.
- W2768546437 cites W2235492460 @default.
- W2768546437 cites W2262901369 @default.
- W2768546437 cites W2283338575 @default.
- W2768546437 cites W2283358961 @default.
- W2768546437 cites W2327782719 @default.
- W2768546437 cites W2465593208 @default.
- W2768546437 cites W2504122675 @default.
- W2768546437 cites W2557192900 @default.
- W2768546437 cites W2564800775 @default.
- W2768546437 cites W2619835575 @default.
- W2768546437 cites W2802768264 @default.
- W2768546437 cites W3098353766 @default.
- W2768546437 cites W3098608372 @default.
- W2768546437 cites W3098693052 @default.
- W2768546437 cites W3102929069 @default.
- W2768546437 cites W756498506 @default.
- W2768546437 doi "https://doi.org/10.1017/jfm.2017.733" @default.
- W2768546437 hasPublicationYear "2017" @default.
- W2768546437 type Work @default.
- W2768546437 sameAs 2768546437 @default.
- W2768546437 citedByCount "54" @default.
- W2768546437 countsByYear W27685464372018 @default.
- W2768546437 countsByYear W27685464372019 @default.
- W2768546437 countsByYear W27685464372020 @default.
- W2768546437 countsByYear W27685464372021 @default.
- W2768546437 countsByYear W27685464372022 @default.
- W2768546437 countsByYear W27685464372023 @default.
- W2768546437 crossrefType "journal-article" @default.
- W2768546437 hasAuthorship W2768546437A5018685081 @default.
- W2768546437 hasAuthorship W2768546437A5065470171 @default.
- W2768546437 hasAuthorship W2768546437A5066321909 @default.
- W2768546437 hasBestOaLocation W27685464372 @default.
- W2768546437 hasConcept C121332964 @default.
- W2768546437 hasConcept C145420912 @default.
- W2768546437 hasConcept C159985019 @default.
- W2768546437 hasConcept C179428855 @default.
- W2768546437 hasConcept C192562407 @default.
- W2768546437 hasConcept C195268267 @default.
- W2768546437 hasConcept C196558001 @default.
- W2768546437 hasConcept C196806460 @default.