Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768618412> ?p ?o ?g. }
- W2768618412 endingPage "8336" @default.
- W2768618412 startingPage "8325" @default.
- W2768618412 abstract "Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies Mubashar Rehman,1–3 Ayesha Ihsan,2 Asadullah Madni,1 Sadia Zafar Bajwa,2 Di Shi,3 Thomas J Webster,3,4 Waheed S Khan2 1Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; 2Nanobiotech Group, National Institute of Biotechnology and Genetic Engineering, Faisalabad, Punjab, Pakistan; 3Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Thermoresponsive drug delivery systems are designed for the controlled and targeted release of therapeutic payload. These systems exploit hyperthermic temperatures (>39°C), which may be applied by some external means or due to an encountered symptom in inflammatory diseases such as cancer and arthritis. The objective of this paper was to provide some solid evidence in support of the hypothesis that solid lipid nanoparticles (SLNs) can be used for thermoresponsive targeting by undergoing solid–liquid phase transition at their melting point (MP). Thermoresponsive lipid mixtures were prepared by mixing solid and liquid natural fatty acids, and their MP was measured by differential scanning calorimetry (DSC). SLNs (MP 39°C) containing 5-fluorouracil (5-FU) were synthesized by hot melt encapsulation method, and were found to have spherical shape (transmission electron microscopy studies), desirable size (90% drug was released at 39°C after 5 hours, suggesting that the SLNs show thermoresponsive drug release, thus confirming our hypothesis. Drug release from SLNs at 39°C was similar to oleic acid and linoleic acid nanoemulsions used in this study, which further confirmed that thermoresponsive drug release is due to solid–liquid phase transition. Next, a differential pulse voltammetry-based electrochemical chemical detection method was developed for quick and real-time analysis of 5-FU release, which also confirmed thermoresponsive drug release behavior of SLNs. Blank SLNs were found to be biocompatible with human gingival fibroblast cells, although 5-FU-loaded SLNs showed some cytotoxicity after 24 hours. 5-FU-loaded SLNs showed thermoresponsive cytotoxicity to breast cancer cells (MDA-MB-231) as cytotoxicity was higher at 39°C (cell viability 72%–78%) compared to 37°C (cell viability >90%) within 1 hour. In conclusion, this study presents SLNs as a safe, simple, and effective platform for thermoresponsive targeting. Keywords: temperature sensitive, breast cancer, 5-fluorouracil, nanostructured lipid carriers, emulsions, fatty acids" @default.
- W2768618412 created "2017-12-04" @default.
- W2768618412 creator A5009925614 @default.
- W2768618412 creator A5017045221 @default.
- W2768618412 creator A5024303082 @default.
- W2768618412 creator A5030742082 @default.
- W2768618412 creator A5050656950 @default.
- W2768618412 creator A5059504764 @default.
- W2768618412 creator A5076201188 @default.
- W2768618412 date "2017-11-01" @default.
- W2768618412 modified "2023-10-13" @default.
- W2768618412 title "Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies" @default.
- W2768618412 cites W1556912674 @default.
- W2768618412 cites W1579046626 @default.
- W2768618412 cites W1929522868 @default.
- W2768618412 cites W1973050459 @default.
- W2768618412 cites W1974888608 @default.
- W2768618412 cites W1980955960 @default.
- W2768618412 cites W1984328540 @default.
- W2768618412 cites W2008542909 @default.
- W2768618412 cites W2012172780 @default.
- W2768618412 cites W2014682822 @default.
- W2768618412 cites W2029555055 @default.
- W2768618412 cites W2036861909 @default.
- W2768618412 cites W2046422196 @default.
- W2768618412 cites W2078339989 @default.
- W2768618412 cites W2082602763 @default.
- W2768618412 cites W2087192433 @default.
- W2768618412 cites W2189686237 @default.
- W2768618412 cites W2215511929 @default.
- W2768618412 cites W2273495465 @default.
- W2768618412 cites W2295224762 @default.
- W2768618412 cites W2318375363 @default.
- W2768618412 cites W2402194152 @default.
- W2768618412 cites W2510835678 @default.
- W2768618412 cites W2520319673 @default.
- W2768618412 cites W2561993805 @default.
- W2768618412 cites W2580036324 @default.
- W2768618412 cites W258735800 @default.
- W2768618412 cites W2599276599 @default.
- W2768618412 doi "https://doi.org/10.2147/ijn.s147506" @default.
- W2768618412 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5701611" @default.
- W2768618412 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29200845" @default.
- W2768618412 hasPublicationYear "2017" @default.
- W2768618412 type Work @default.
- W2768618412 sameAs 2768618412 @default.
- W2768618412 citedByCount "28" @default.
- W2768618412 countsByYear W27686184122018 @default.
- W2768618412 countsByYear W27686184122019 @default.
- W2768618412 countsByYear W27686184122020 @default.
- W2768618412 countsByYear W27686184122021 @default.
- W2768618412 countsByYear W27686184122022 @default.
- W2768618412 countsByYear W27686184122023 @default.
- W2768618412 crossrefType "journal-article" @default.
- W2768618412 hasAuthorship W2768618412A5009925614 @default.
- W2768618412 hasAuthorship W2768618412A5017045221 @default.
- W2768618412 hasAuthorship W2768618412A5024303082 @default.
- W2768618412 hasAuthorship W2768618412A5030742082 @default.
- W2768618412 hasAuthorship W2768618412A5050656950 @default.
- W2768618412 hasAuthorship W2768618412A5059504764 @default.
- W2768618412 hasAuthorship W2768618412A5076201188 @default.
- W2768618412 hasBestOaLocation W27686184121 @default.
- W2768618412 hasConcept C109316439 @default.
- W2768618412 hasConcept C121332964 @default.
- W2768618412 hasConcept C13965031 @default.
- W2768618412 hasConcept C155672457 @default.
- W2768618412 hasConcept C171250308 @default.
- W2768618412 hasConcept C185592680 @default.
- W2768618412 hasConcept C192562407 @default.
- W2768618412 hasConcept C199529486 @default.
- W2768618412 hasConcept C202751555 @default.
- W2768618412 hasConcept C21951064 @default.
- W2768618412 hasConcept C2779732960 @default.
- W2768618412 hasConcept C2779820397 @default.
- W2768618412 hasConcept C2780035454 @default.
- W2768618412 hasConcept C2781403372 @default.
- W2768618412 hasConcept C39519442 @default.
- W2768618412 hasConcept C43617362 @default.
- W2768618412 hasConcept C55493867 @default.
- W2768618412 hasConcept C71924100 @default.
- W2768618412 hasConcept C97355855 @default.
- W2768618412 hasConcept C98274493 @default.
- W2768618412 hasConceptScore W2768618412C109316439 @default.
- W2768618412 hasConceptScore W2768618412C121332964 @default.
- W2768618412 hasConceptScore W2768618412C13965031 @default.
- W2768618412 hasConceptScore W2768618412C155672457 @default.
- W2768618412 hasConceptScore W2768618412C171250308 @default.
- W2768618412 hasConceptScore W2768618412C185592680 @default.
- W2768618412 hasConceptScore W2768618412C192562407 @default.
- W2768618412 hasConceptScore W2768618412C199529486 @default.
- W2768618412 hasConceptScore W2768618412C202751555 @default.
- W2768618412 hasConceptScore W2768618412C21951064 @default.
- W2768618412 hasConceptScore W2768618412C2779732960 @default.
- W2768618412 hasConceptScore W2768618412C2779820397 @default.
- W2768618412 hasConceptScore W2768618412C2780035454 @default.
- W2768618412 hasConceptScore W2768618412C2781403372 @default.
- W2768618412 hasConceptScore W2768618412C39519442 @default.
- W2768618412 hasConceptScore W2768618412C43617362 @default.