Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768642709> ?p ?o ?g. }
- W2768642709 endingPage "4369" @default.
- W2768642709 startingPage "4321" @default.
- W2768642709 abstract "Learning a causal effect from observational data requires strong assumptions. One possible method is to use instrumental variables, which are typically justified by background knowledge. It is possible, under further assumptions, to discover whether a variable is structurally instrumental to a target causal effect X → Y. However, the few existing approaches are lacking on how general these assumptions can be, and how to express possible equivalence classes of solutions. We present instrumental variable discovery methods that systematically characterize which set of causal effects can and cannot be discovered under local graphical criteria that define instrumental variables, without reconstructing full causal graphs. We also introduce the first methods to exploit non-Gaussianity assumptions, highlighting identifiability problems and solutions. Due to the difficulty of estimating such models from finite data, we investigate how to strengthen assumptions in order to make the statistical problem more manageable." @default.
- W2768642709 created "2017-12-04" @default.
- W2768642709 creator A5033941123 @default.
- W2768642709 creator A5077846534 @default.
- W2768642709 date "2017-01-01" @default.
- W2768642709 modified "2023-09-27" @default.
- W2768642709 title "Learning instrumental variables with structural and non-gaussianity assumptions" @default.
- W2768642709 cites W148043983 @default.
- W2768642709 cites W1498719432 @default.
- W2768642709 cites W1524326598 @default.
- W2768642709 cites W1541738043 @default.
- W2768642709 cites W1542581579 @default.
- W2768642709 cites W1573522160 @default.
- W2768642709 cites W1584686383 @default.
- W2768642709 cites W1585814636 @default.
- W2768642709 cites W1596022446 @default.
- W2768642709 cites W163266900 @default.
- W2768642709 cites W1982479168 @default.
- W2768642709 cites W1984500298 @default.
- W2768642709 cites W1986672307 @default.
- W2768642709 cites W1991587639 @default.
- W2768642709 cites W2018084659 @default.
- W2768642709 cites W2028581488 @default.
- W2768642709 cites W2059334100 @default.
- W2768642709 cites W2063978378 @default.
- W2768642709 cites W2073307618 @default.
- W2768642709 cites W2086331397 @default.
- W2768642709 cites W2093947494 @default.
- W2768642709 cites W2112552549 @default.
- W2768642709 cites W2121153869 @default.
- W2768642709 cites W2128736149 @default.
- W2768642709 cites W2129465958 @default.
- W2768642709 cites W2132547334 @default.
- W2768642709 cites W2133487567 @default.
- W2768642709 cites W2135404705 @default.
- W2768642709 cites W2137099275 @default.
- W2768642709 cites W2151226328 @default.
- W2768642709 cites W2155573334 @default.
- W2768642709 cites W2182138479 @default.
- W2768642709 cites W2210922416 @default.
- W2768642709 cites W2215484510 @default.
- W2768642709 cites W2324862792 @default.
- W2768642709 cites W2796901885 @default.
- W2768642709 cites W2963781702 @default.
- W2768642709 cites W30853191 @default.
- W2768642709 cites W3099019541 @default.
- W2768642709 cites W3133236490 @default.
- W2768642709 cites W3144040573 @default.
- W2768642709 cites W618083267 @default.
- W2768642709 hasPublicationYear "2017" @default.
- W2768642709 type Work @default.
- W2768642709 sameAs 2768642709 @default.
- W2768642709 citedByCount "6" @default.
- W2768642709 countsByYear W27686427092019 @default.
- W2768642709 countsByYear W27686427092020 @default.
- W2768642709 crossrefType "journal-article" @default.
- W2768642709 hasAuthorship W2768642709A5033941123 @default.
- W2768642709 hasAuthorship W2768642709A5077846534 @default.
- W2768642709 hasConcept C105795698 @default.
- W2768642709 hasConcept C11671645 @default.
- W2768642709 hasConcept C116834253 @default.
- W2768642709 hasConcept C118615104 @default.
- W2768642709 hasConcept C119857082 @default.
- W2768642709 hasConcept C121332964 @default.
- W2768642709 hasConcept C122770356 @default.
- W2768642709 hasConcept C134306372 @default.
- W2768642709 hasConcept C137002209 @default.
- W2768642709 hasConcept C149782125 @default.
- W2768642709 hasConcept C158600405 @default.
- W2768642709 hasConcept C162144332 @default.
- W2768642709 hasConcept C165696696 @default.
- W2768642709 hasConcept C182365436 @default.
- W2768642709 hasConcept C2780069185 @default.
- W2768642709 hasConcept C33923547 @default.
- W2768642709 hasConcept C38652104 @default.
- W2768642709 hasConcept C41008148 @default.
- W2768642709 hasConcept C59822182 @default.
- W2768642709 hasConcept C62520636 @default.
- W2768642709 hasConcept C84114770 @default.
- W2768642709 hasConcept C86803240 @default.
- W2768642709 hasConceptScore W2768642709C105795698 @default.
- W2768642709 hasConceptScore W2768642709C11671645 @default.
- W2768642709 hasConceptScore W2768642709C116834253 @default.
- W2768642709 hasConceptScore W2768642709C118615104 @default.
- W2768642709 hasConceptScore W2768642709C119857082 @default.
- W2768642709 hasConceptScore W2768642709C121332964 @default.
- W2768642709 hasConceptScore W2768642709C122770356 @default.
- W2768642709 hasConceptScore W2768642709C134306372 @default.
- W2768642709 hasConceptScore W2768642709C137002209 @default.
- W2768642709 hasConceptScore W2768642709C149782125 @default.
- W2768642709 hasConceptScore W2768642709C158600405 @default.
- W2768642709 hasConceptScore W2768642709C162144332 @default.
- W2768642709 hasConceptScore W2768642709C165696696 @default.
- W2768642709 hasConceptScore W2768642709C182365436 @default.
- W2768642709 hasConceptScore W2768642709C2780069185 @default.
- W2768642709 hasConceptScore W2768642709C33923547 @default.
- W2768642709 hasConceptScore W2768642709C38652104 @default.
- W2768642709 hasConceptScore W2768642709C41008148 @default.