Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768704901> ?p ?o ?g. }
- W2768704901 abstract "Different from the conventional deep learning work based on an images content in computer vision, deep steganalysis is an art to detect the secret information embedded in an image via deep learning, pose challenge of detection weak information invisible hidden in a host image thus learning in a very low signal-to-noise (SNR) case. In this paper, we propose a 32- layer convolutional neural Networks (CNNs) in to improve the efficiency of preprocess and reuse the features by concatenating all features from the previous layers with the same feature- map size, thus improve the flow of information and gradient. The shared features and bottleneck layers further improve the feature propagation and reduce the CNN model parameters dramatically. Experimental results on the BOSSbase, BOWS2 and ImageNet datasets have showed that the proposed CNN architecture can improve the performance and enhance the robustness. To further boost the detection accuracy, an ensemble architecture called as CNN-SCA-GFR is proposed, CNN-SCA- GFR is also the first work to combine the CNN architecture and conventional method in the JPEG domain. Experiments show that it can further lower detection errors. Compared with the state-of-the-art method XuNet [1] on BOSSbase, the proposed CNN-SCA-GFR architecture can reduce detection error rate by 5.67% for 0.1 bpnzAC and by 4.41% for 0.4 bpnzAC while the number of training parameters in CNN is only 17% of what used by XuNet. It also decreases the detection errors from the conventional method SCA-GFR by 7.89% for 0.1 bpnzAC and 8.06% for 0.4 bpnzAC, respectively." @default.
- W2768704901 created "2017-12-04" @default.
- W2768704901 creator A5011184683 @default.
- W2768704901 creator A5045393106 @default.
- W2768704901 creator A5062980212 @default.
- W2768704901 creator A5077333494 @default.
- W2768704901 date "2017-11-26" @default.
- W2768704901 modified "2023-09-27" @default.
- W2768704901 title "JPEG Steganalysis Based on DenseNet" @default.
- W2768704901 cites W1976570511 @default.
- W2768704901 cites W2009130368 @default.
- W2768704901 cites W2045110448 @default.
- W2768704901 cites W2046180645 @default.
- W2768704901 cites W2059019537 @default.
- W2768704901 cites W2081564928 @default.
- W2768704901 cites W2104705565 @default.
- W2768704901 cites W2117539524 @default.
- W2768704901 cites W2170598445 @default.
- W2768704901 cites W2194775991 @default.
- W2768704901 cites W22271197 @default.
- W2768704901 cites W2322622188 @default.
- W2768704901 cites W2339370745 @default.
- W2768704901 cites W2514127746 @default.
- W2768704901 cites W2621048556 @default.
- W2768704901 cites W2733608110 @default.
- W2768704901 cites W2735904389 @default.
- W2768704901 cites W2737788279 @default.
- W2768704901 cites W2739185626 @default.
- W2768704901 cites W2888845754 @default.
- W2768704901 cites W2949117887 @default.
- W2768704901 cites W2950094539 @default.
- W2768704901 cites W2951787955 @default.
- W2768704901 cites W2963446712 @default.
- W2768704901 cites W2963682422 @default.
- W2768704901 hasPublicationYear "2017" @default.
- W2768704901 type Work @default.
- W2768704901 sameAs 2768704901 @default.
- W2768704901 citedByCount "2" @default.
- W2768704901 countsByYear W27687049012018 @default.
- W2768704901 countsByYear W27687049012019 @default.
- W2768704901 crossrefType "posted-content" @default.
- W2768704901 hasAuthorship W2768704901A5011184683 @default.
- W2768704901 hasAuthorship W2768704901A5045393106 @default.
- W2768704901 hasAuthorship W2768704901A5062980212 @default.
- W2768704901 hasAuthorship W2768704901A5077333494 @default.
- W2768704901 hasConcept C104317684 @default.
- W2768704901 hasConcept C107368093 @default.
- W2768704901 hasConcept C108583219 @default.
- W2768704901 hasConcept C108801101 @default.
- W2768704901 hasConcept C115961682 @default.
- W2768704901 hasConcept C138885662 @default.
- W2768704901 hasConcept C149635348 @default.
- W2768704901 hasConcept C153180895 @default.
- W2768704901 hasConcept C154945302 @default.
- W2768704901 hasConcept C185592680 @default.
- W2768704901 hasConcept C198751489 @default.
- W2768704901 hasConcept C2776401178 @default.
- W2768704901 hasConcept C2780513914 @default.
- W2768704901 hasConcept C41008148 @default.
- W2768704901 hasConcept C41895202 @default.
- W2768704901 hasConcept C52622490 @default.
- W2768704901 hasConcept C55493867 @default.
- W2768704901 hasConcept C63479239 @default.
- W2768704901 hasConcept C81363708 @default.
- W2768704901 hasConceptScore W2768704901C104317684 @default.
- W2768704901 hasConceptScore W2768704901C107368093 @default.
- W2768704901 hasConceptScore W2768704901C108583219 @default.
- W2768704901 hasConceptScore W2768704901C108801101 @default.
- W2768704901 hasConceptScore W2768704901C115961682 @default.
- W2768704901 hasConceptScore W2768704901C138885662 @default.
- W2768704901 hasConceptScore W2768704901C149635348 @default.
- W2768704901 hasConceptScore W2768704901C153180895 @default.
- W2768704901 hasConceptScore W2768704901C154945302 @default.
- W2768704901 hasConceptScore W2768704901C185592680 @default.
- W2768704901 hasConceptScore W2768704901C198751489 @default.
- W2768704901 hasConceptScore W2768704901C2776401178 @default.
- W2768704901 hasConceptScore W2768704901C2780513914 @default.
- W2768704901 hasConceptScore W2768704901C41008148 @default.
- W2768704901 hasConceptScore W2768704901C41895202 @default.
- W2768704901 hasConceptScore W2768704901C52622490 @default.
- W2768704901 hasConceptScore W2768704901C55493867 @default.
- W2768704901 hasConceptScore W2768704901C63479239 @default.
- W2768704901 hasConceptScore W2768704901C81363708 @default.
- W2768704901 hasLocation W27687049011 @default.
- W2768704901 hasOpenAccess W2768704901 @default.
- W2768704901 hasPrimaryLocation W27687049011 @default.
- W2768704901 hasRelatedWork W1973466159 @default.
- W2768704901 hasRelatedWork W1976570511 @default.
- W2768704901 hasRelatedWork W2009130368 @default.
- W2768704901 hasRelatedWork W2046180645 @default.
- W2768704901 hasRelatedWork W2104705565 @default.
- W2768704901 hasRelatedWork W2170598445 @default.
- W2768704901 hasRelatedWork W2194775991 @default.
- W2768704901 hasRelatedWork W22271197 @default.
- W2768704901 hasRelatedWork W2322622188 @default.
- W2768704901 hasRelatedWork W2339370745 @default.
- W2768704901 hasRelatedWork W2416075718 @default.
- W2768704901 hasRelatedWork W2514127746 @default.
- W2768704901 hasRelatedWork W2542290803 @default.
- W2768704901 hasRelatedWork W2565257220 @default.