Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768740883> ?p ?o ?g. }
- W2768740883 endingPage "1046.e2" @default.
- W2768740883 startingPage "1037" @default.
- W2768740883 abstract "Background & AimsIt is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis.MethodsC56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses.ResultsFecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient could be offset by changes in another.ConclusionsIn an analysis of the effects of different dietary components and the gut microbiota on mice with and without DSS-induced colitis, we found complex mixtures of nutrients affect intestinal permeability, gut microbial density, and development of intestinal inflammation. It is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis. C56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses. Fecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient could be offset by changes in another. In an analysis of the effects of different dietary components and the gut microbiota on mice with and without DSS-induced colitis, we found complex mixtures of nutrients affect intestinal permeability, gut microbial density, and development of intestinal inflammation." @default.
- W2768740883 created "2017-12-04" @default.
- W2768740883 creator A5015470174 @default.
- W2768740883 creator A5034950791 @default.
- W2768740883 creator A5037815045 @default.
- W2768740883 creator A5040852112 @default.
- W2768740883 creator A5049350088 @default.
- W2768740883 creator A5049747447 @default.
- W2768740883 creator A5070354041 @default.
- W2768740883 creator A5087297338 @default.
- W2768740883 creator A5091763649 @default.
- W2768740883 creator A5091860674 @default.
- W2768740883 date "2018-03-01" @default.
- W2768740883 modified "2023-10-18" @default.
- W2768740883 title "Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice" @default.
- W2768740883 cites W1590994140 @default.
- W2768740883 cites W1864656638 @default.
- W2768740883 cites W1932727195 @default.
- W2768740883 cites W1961184135 @default.
- W2768740883 cites W1968105193 @default.
- W2768740883 cites W1988706813 @default.
- W2768740883 cites W1996078707 @default.
- W2768740883 cites W1999906527 @default.
- W2768740883 cites W2002061924 @default.
- W2768740883 cites W2003269843 @default.
- W2768740883 cites W2003342633 @default.
- W2768740883 cites W2011366548 @default.
- W2768740883 cites W2012604741 @default.
- W2768740883 cites W2026981137 @default.
- W2768740883 cites W2033239478 @default.
- W2768740883 cites W2036913140 @default.
- W2768740883 cites W2041160872 @default.
- W2768740883 cites W2043731178 @default.
- W2768740883 cites W2057460314 @default.
- W2768740883 cites W2059019883 @default.
- W2768740883 cites W2060185417 @default.
- W2768740883 cites W2063978378 @default.
- W2768740883 cites W2072970694 @default.
- W2768740883 cites W2076962784 @default.
- W2768740883 cites W2078754045 @default.
- W2768740883 cites W2085284704 @default.
- W2768740883 cites W2090742607 @default.
- W2768740883 cites W2092450605 @default.
- W2768740883 cites W2096947655 @default.
- W2768740883 cites W2102278945 @default.
- W2768740883 cites W2103431821 @default.
- W2768740883 cites W2104005232 @default.
- W2768740883 cites W2117299437 @default.
- W2768740883 cites W2133856765 @default.
- W2768740883 cites W2134657806 @default.
- W2768740883 cites W2136552678 @default.
- W2768740883 cites W2137195441 @default.
- W2768740883 cites W2150775693 @default.
- W2768740883 cites W2154026962 @default.
- W2768740883 cites W2158217645 @default.
- W2768740883 cites W2165067288 @default.
- W2768740883 cites W2166562121 @default.
- W2768740883 cites W2167692246 @default.
- W2768740883 cites W2209574228 @default.
- W2768740883 cites W2345689279 @default.
- W2768740883 cites W2469068457 @default.
- W2768740883 cites W2510875395 @default.
- W2768740883 cites W2532466018 @default.
- W2768740883 cites W2534977774 @default.
- W2768740883 cites W2550352184 @default.
- W2768740883 cites W2552041992 @default.
- W2768740883 cites W2588070196 @default.
- W2768740883 cites W293546233 @default.
- W2768740883 doi "https://doi.org/10.1053/j.gastro.2017.11.030" @default.
- W2768740883 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5847454" @default.
- W2768740883 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29174952" @default.
- W2768740883 hasPublicationYear "2018" @default.
- W2768740883 type Work @default.
- W2768740883 sameAs 2768740883 @default.
- W2768740883 citedByCount "236" @default.
- W2768740883 countsByYear W27687408832018 @default.
- W2768740883 countsByYear W27687408832019 @default.
- W2768740883 countsByYear W27687408832020 @default.
- W2768740883 countsByYear W27687408832021 @default.
- W2768740883 countsByYear W27687408832022 @default.
- W2768740883 countsByYear W27687408832023 @default.
- W2768740883 crossrefType "journal-article" @default.
- W2768740883 hasAuthorship W2768740883A5015470174 @default.
- W2768740883 hasAuthorship W2768740883A5034950791 @default.
- W2768740883 hasAuthorship W2768740883A5037815045 @default.
- W2768740883 hasAuthorship W2768740883A5040852112 @default.
- W2768740883 hasAuthorship W2768740883A5049350088 @default.
- W2768740883 hasAuthorship W2768740883A5049747447 @default.
- W2768740883 hasAuthorship W2768740883A5070354041 @default.
- W2768740883 hasAuthorship W2768740883A5087297338 @default.
- W2768740883 hasAuthorship W2768740883A5091763649 @default.
- W2768740883 hasAuthorship W2768740883A5091860674 @default.
- W2768740883 hasBestOaLocation W27687408831 @default.
- W2768740883 hasConcept C126322002 @default.
- W2768740883 hasConcept C203014093 @default.
- W2768740883 hasConcept C2775862500 @default.
- W2768740883 hasConcept C2777385719 @default.
- W2768740883 hasConcept C2777695942 @default.