Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768756891> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2768756891 abstract "The advent of single-cell RNA sequencing (scRNA-seq) has given researchers the ability to study transcriptomic activity within individual cells, rather than across hundreds or thousands of cells as with bulk RNA-seq techniques. The greater precision afforded by scRNA-seq identifies mutations and gene expression landscapes private to individual cells or subpopulations, enabling us to determine novel cell types and understand biological systems at greater resolution. Usually biological insights are obtained through the use of unsupervised learning methods on high dimensional single-cell datasets. These methods have to take into account the technical noise structure and distributional properties of scRNA-seq datasets for optimal results. Because the optimal set of analysis methods is different between datasets and there is a wide selection of methods available, it can be both daunting and challenging to design an effective scRNA-seq experiment. In this study, we propose an empirical approach to design a better scRNAseq experiment and answer unresolved biological questions. The tool helps to determine the number of single cells to be profiled and the optimal computational pipeline based on the characteristics of the tissue system under study. Using simulated datasets, we demonstrate that the number of single cells required and the appropriate analysis strategy depend on the characteristics of the cell types under investigation1." @default.
- W2768756891 created "2017-12-04" @default.
- W2768756891 creator A5043408006 @default.
- W2768756891 creator A5049692239 @default.
- W2768756891 creator A5062724133 @default.
- W2768756891 creator A5081505957 @default.
- W2768756891 date "2017-10-01" @default.
- W2768756891 modified "2023-09-23" @default.
- W2768756891 title "A computational method to aid in the design and analysis of single cell RNA-seq experiments" @default.
- W2768756891 doi "https://doi.org/10.1109/iccabs.2017.8114311" @default.
- W2768756891 hasPublicationYear "2017" @default.
- W2768756891 type Work @default.
- W2768756891 sameAs 2768756891 @default.
- W2768756891 citedByCount "0" @default.
- W2768756891 crossrefType "proceedings-article" @default.
- W2768756891 hasAuthorship W2768756891A5043408006 @default.
- W2768756891 hasAuthorship W2768756891A5049692239 @default.
- W2768756891 hasAuthorship W2768756891A5062724133 @default.
- W2768756891 hasAuthorship W2768756891A5081505957 @default.
- W2768756891 hasConcept C119857082 @default.
- W2768756891 hasConcept C124101348 @default.
- W2768756891 hasConcept C154945302 @default.
- W2768756891 hasConcept C177264268 @default.
- W2768756891 hasConcept C199360897 @default.
- W2768756891 hasConcept C41008148 @default.
- W2768756891 hasConcept C43521106 @default.
- W2768756891 hasConcept C70721500 @default.
- W2768756891 hasConcept C86803240 @default.
- W2768756891 hasConceptScore W2768756891C119857082 @default.
- W2768756891 hasConceptScore W2768756891C124101348 @default.
- W2768756891 hasConceptScore W2768756891C154945302 @default.
- W2768756891 hasConceptScore W2768756891C177264268 @default.
- W2768756891 hasConceptScore W2768756891C199360897 @default.
- W2768756891 hasConceptScore W2768756891C41008148 @default.
- W2768756891 hasConceptScore W2768756891C43521106 @default.
- W2768756891 hasConceptScore W2768756891C70721500 @default.
- W2768756891 hasConceptScore W2768756891C86803240 @default.
- W2768756891 hasLocation W27687568911 @default.
- W2768756891 hasOpenAccess W2768756891 @default.
- W2768756891 hasPrimaryLocation W27687568911 @default.
- W2768756891 hasRelatedWork W2735081253 @default.
- W2768756891 hasRelatedWork W2746374269 @default.
- W2768756891 hasRelatedWork W2883913778 @default.
- W2768756891 hasRelatedWork W2898821675 @default.
- W2768756891 hasRelatedWork W2914451825 @default.
- W2768756891 hasRelatedWork W2949681238 @default.
- W2768756891 hasRelatedWork W2952527860 @default.
- W2768756891 hasRelatedWork W2982411152 @default.
- W2768756891 hasRelatedWork W3080570713 @default.
- W2768756891 hasRelatedWork W3151709979 @default.
- W2768756891 hasRelatedWork W3157774450 @default.
- W2768756891 hasRelatedWork W3161256712 @default.
- W2768756891 hasRelatedWork W3162160410 @default.
- W2768756891 hasRelatedWork W3188772398 @default.
- W2768756891 hasRelatedWork W3189065844 @default.
- W2768756891 hasRelatedWork W3202202950 @default.
- W2768756891 hasRelatedWork W3205540525 @default.
- W2768756891 hasRelatedWork W3208953781 @default.
- W2768756891 hasRelatedWork W3209268784 @default.
- W2768756891 hasRelatedWork W3211740020 @default.
- W2768756891 isParatext "false" @default.
- W2768756891 isRetracted "false" @default.
- W2768756891 magId "2768756891" @default.
- W2768756891 workType "article" @default.