Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768761748> ?p ?o ?g. }
- W2768761748 abstract "Abstract A “bent waveguide” in the sense used here is a small perturbation of a two-dimensional rectangular strip which is infinitely long in the down-channel direction and has a finite, constant width in the cross-channel coordinate. The goal is to calculate the smallest (“ground state”) eigenvalue of the stationary Schrodinger equation which here is a two-dimensional Helmholtz equation, ψ x x + ψ y y + E ψ = 0 where E is the eigenvalue and homogeneous Dirichlet boundary conditions are imposed on the walls of the waveguide. Perturbation theory gives a good description when the “bending strength” parameter ϵ is small as described in our previous article (Amore et al., 2017) and other works cited therein. However, such series are asymptotic, and it is often impractical to calculate more than a handful of terms. It is therefore useful to develop numerical methods for the perturbed strip to cover intermediate ϵ where the perturbation series may be inaccurate and also to check the pertubation expansion when ϵ is small. The perturbation-induced change-in-eigenvalue, δ ≡ E ( ϵ ) − E ( 0 ) , is O ( ϵ 2 ) . We show that the computation becomes very challenging as ϵ → 0 because (i) the ground state eigenfunction varies on both O ( 1 ) and O ( 1 ∕ ϵ ) length scales and (ii) high accuracy is needed to compute several correct digits in δ , which is itself small compared to the eigenvalue E . The multiple length scales are not geographically separate, but rather are inextricably commingled in the neighborhood of the boundary deformation. We show that coordinate mapping and immersed boundary strategies both reduce the computational domain to the uniform strip, allowing application of pseudospectral methods on tensor product grids with tensor product basis functions. We compared different basis sets; Chebyshev polynomials are best in the cross-channel direction. However, sine functions generate rather accurate analytical approximations with just a single basis function. In the down-channel coordinate, X ∈ [ − ∞ , ∞ ] , Fourier domain truncation using the change of coordinate X = sinh ( L t ) is considerably more efficient than rational Chebyshev functions TB n ( X ; L ) . All the spectral methods, however, yielded the required accuracy on a desktop computer." @default.
- W2768761748 created "2017-12-04" @default.
- W2768761748 creator A5012515686 @default.
- W2768761748 creator A5035585846 @default.
- W2768761748 creator A5074056648 @default.
- W2768761748 date "2018-03-01" @default.
- W2768761748 modified "2023-10-08" @default.
- W2768761748 title "Spectral algorithms for multiple scale localized eigenfunctions in infinitely long, slightly bent quantum waveguides" @default.
- W2768761748 cites W1965328196 @default.
- W2768761748 cites W1974394614 @default.
- W2768761748 cites W1998527589 @default.
- W2768761748 cites W2021674938 @default.
- W2768761748 cites W2057217612 @default.
- W2768761748 cites W2058338453 @default.
- W2768761748 cites W2065378774 @default.
- W2768761748 cites W2066313543 @default.
- W2768761748 cites W2074501931 @default.
- W2768761748 cites W2130193092 @default.
- W2768761748 cites W2171692351 @default.
- W2768761748 cites W2330546072 @default.
- W2768761748 cites W2463648154 @default.
- W2768761748 cites W4253937035 @default.
- W2768761748 doi "https://doi.org/10.1016/j.cpc.2017.10.015" @default.
- W2768761748 hasPublicationYear "2018" @default.
- W2768761748 type Work @default.
- W2768761748 sameAs 2768761748 @default.
- W2768761748 citedByCount "0" @default.
- W2768761748 crossrefType "journal-article" @default.
- W2768761748 hasAuthorship W2768761748A5012515686 @default.
- W2768761748 hasAuthorship W2768761748A5035585846 @default.
- W2768761748 hasAuthorship W2768761748A5074056648 @default.
- W2768761748 hasConcept C110167270 @default.
- W2768761748 hasConcept C11413529 @default.
- W2768761748 hasConcept C11683690 @default.
- W2768761748 hasConcept C121332964 @default.
- W2768761748 hasConcept C128803854 @default.
- W2768761748 hasConcept C134306372 @default.
- W2768761748 hasConcept C138211643 @default.
- W2768761748 hasConcept C143724316 @default.
- W2768761748 hasConcept C151730666 @default.
- W2768761748 hasConcept C158693339 @default.
- W2768761748 hasConcept C177918212 @default.
- W2768761748 hasConcept C178790620 @default.
- W2768761748 hasConcept C182310444 @default.
- W2768761748 hasConcept C185592680 @default.
- W2768761748 hasConcept C18591234 @default.
- W2768761748 hasConcept C2524010 @default.
- W2768761748 hasConcept C33923547 @default.
- W2768761748 hasConcept C45374587 @default.
- W2768761748 hasConcept C62520636 @default.
- W2768761748 hasConcept C86803240 @default.
- W2768761748 hasConcept C88030215 @default.
- W2768761748 hasConceptScore W2768761748C110167270 @default.
- W2768761748 hasConceptScore W2768761748C11413529 @default.
- W2768761748 hasConceptScore W2768761748C11683690 @default.
- W2768761748 hasConceptScore W2768761748C121332964 @default.
- W2768761748 hasConceptScore W2768761748C128803854 @default.
- W2768761748 hasConceptScore W2768761748C134306372 @default.
- W2768761748 hasConceptScore W2768761748C138211643 @default.
- W2768761748 hasConceptScore W2768761748C143724316 @default.
- W2768761748 hasConceptScore W2768761748C151730666 @default.
- W2768761748 hasConceptScore W2768761748C158693339 @default.
- W2768761748 hasConceptScore W2768761748C177918212 @default.
- W2768761748 hasConceptScore W2768761748C178790620 @default.
- W2768761748 hasConceptScore W2768761748C182310444 @default.
- W2768761748 hasConceptScore W2768761748C185592680 @default.
- W2768761748 hasConceptScore W2768761748C18591234 @default.
- W2768761748 hasConceptScore W2768761748C2524010 @default.
- W2768761748 hasConceptScore W2768761748C33923547 @default.
- W2768761748 hasConceptScore W2768761748C45374587 @default.
- W2768761748 hasConceptScore W2768761748C62520636 @default.
- W2768761748 hasConceptScore W2768761748C86803240 @default.
- W2768761748 hasConceptScore W2768761748C88030215 @default.
- W2768761748 hasFunder F4320306076 @default.
- W2768761748 hasLocation W27687617481 @default.
- W2768761748 hasOpenAccess W2768761748 @default.
- W2768761748 hasPrimaryLocation W27687617481 @default.
- W2768761748 hasRelatedWork W131427053 @default.
- W2768761748 hasRelatedWork W1988548797 @default.
- W2768761748 hasRelatedWork W2008960299 @default.
- W2768761748 hasRelatedWork W2029687546 @default.
- W2768761748 hasRelatedWork W2201685261 @default.
- W2768761748 hasRelatedWork W2231423844 @default.
- W2768761748 hasRelatedWork W2325749161 @default.
- W2768761748 hasRelatedWork W2474089607 @default.
- W2768761748 hasRelatedWork W2614422919 @default.
- W2768761748 hasRelatedWork W2626574048 @default.
- W2768761748 hasRelatedWork W2952125423 @default.
- W2768761748 hasRelatedWork W2956741912 @default.
- W2768761748 hasRelatedWork W3092632390 @default.
- W2768761748 hasRelatedWork W3098235920 @default.
- W2768761748 hasRelatedWork W3099898304 @default.
- W2768761748 hasRelatedWork W3102984395 @default.
- W2768761748 hasRelatedWork W3105197645 @default.
- W2768761748 hasRelatedWork W3160659143 @default.
- W2768761748 hasRelatedWork W746435251 @default.
- W2768761748 hasRelatedWork W2183060693 @default.
- W2768761748 isParatext "false" @default.
- W2768761748 isRetracted "false" @default.
- W2768761748 magId "2768761748" @default.