Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768793217> ?p ?o ?g. }
- W2768793217 endingPage "115" @default.
- W2768793217 startingPage "95" @default.
- W2768793217 abstract "We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data." @default.
- W2768793217 created "2017-12-04" @default.
- W2768793217 creator A5016217712 @default.
- W2768793217 creator A5019124920 @default.
- W2768793217 creator A5033812291 @default.
- W2768793217 creator A5041721032 @default.
- W2768793217 creator A5045540607 @default.
- W2768793217 creator A5045615014 @default.
- W2768793217 creator A5048417606 @default.
- W2768793217 creator A5078070589 @default.
- W2768793217 creator A5082106258 @default.
- W2768793217 creator A5087583681 @default.
- W2768793217 date "2017-12-26" @default.
- W2768793217 modified "2023-10-13" @default.
- W2768793217 title "NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis" @default.
- W2768793217 cites W1585078554 @default.
- W2768793217 cites W192531571 @default.
- W2768793217 cites W1949599440 @default.
- W2768793217 cites W1975127965 @default.
- W2768793217 cites W1975568766 @default.
- W2768793217 cites W1979461960 @default.
- W2768793217 cites W1991789140 @default.
- W2768793217 cites W1995593757 @default.
- W2768793217 cites W2011181254 @default.
- W2768793217 cites W2015483865 @default.
- W2768793217 cites W2024903557 @default.
- W2768793217 cites W2026752633 @default.
- W2768793217 cites W2034153422 @default.
- W2768793217 cites W2054422278 @default.
- W2768793217 cites W2055483062 @default.
- W2768793217 cites W2057770669 @default.
- W2768793217 cites W2064173428 @default.
- W2768793217 cites W2073282868 @default.
- W2768793217 cites W2080500950 @default.
- W2768793217 cites W2102346612 @default.
- W2768793217 cites W2104326120 @default.
- W2768793217 cites W2116181343 @default.
- W2768793217 cites W2129150528 @default.
- W2768793217 cites W2133863862 @default.
- W2768793217 cites W2135432150 @default.
- W2768793217 cites W2145051661 @default.
- W2768793217 cites W2154460718 @default.
- W2768793217 cites W2154744699 @default.
- W2768793217 cites W2257069458 @default.
- W2768793217 cites W2336208919 @default.
- W2768793217 cites W2405803404 @default.
- W2768793217 cites W2413430220 @default.
- W2768793217 cites W2416315287 @default.
- W2768793217 cites W2514990781 @default.
- W2768793217 cites W2529357880 @default.
- W2768793217 cites W2534646255 @default.
- W2768793217 cites W2541444040 @default.
- W2768793217 cites W2549604483 @default.
- W2768793217 cites W2551771496 @default.
- W2768793217 cites W2605878539 @default.
- W2768793217 cites W2765161009 @default.
- W2768793217 cites W98549894 @default.
- W2768793217 cites W2104896914 @default.
- W2768793217 doi "https://doi.org/10.1007/s12021-017-9352-y" @default.
- W2768793217 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5797201" @default.
- W2768793217 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29280050" @default.
- W2768793217 hasPublicationYear "2017" @default.
- W2768793217 type Work @default.
- W2768793217 sameAs 2768793217 @default.
- W2768793217 citedByCount "34" @default.
- W2768793217 countsByYear W27687932172018 @default.
- W2768793217 countsByYear W27687932172019 @default.
- W2768793217 countsByYear W27687932172020 @default.
- W2768793217 countsByYear W27687932172021 @default.
- W2768793217 countsByYear W27687932172022 @default.
- W2768793217 countsByYear W27687932172023 @default.
- W2768793217 crossrefType "journal-article" @default.
- W2768793217 hasAuthorship W2768793217A5016217712 @default.
- W2768793217 hasAuthorship W2768793217A5019124920 @default.
- W2768793217 hasAuthorship W2768793217A5033812291 @default.
- W2768793217 hasAuthorship W2768793217A5041721032 @default.
- W2768793217 hasAuthorship W2768793217A5045540607 @default.
- W2768793217 hasAuthorship W2768793217A5045615014 @default.
- W2768793217 hasAuthorship W2768793217A5048417606 @default.
- W2768793217 hasAuthorship W2768793217A5078070589 @default.
- W2768793217 hasAuthorship W2768793217A5082106258 @default.
- W2768793217 hasAuthorship W2768793217A5087583681 @default.
- W2768793217 hasBestOaLocation W27687932171 @default.
- W2768793217 hasConcept C111919701 @default.
- W2768793217 hasConcept C115961682 @default.
- W2768793217 hasConcept C154945302 @default.
- W2768793217 hasConcept C199360897 @default.
- W2768793217 hasConcept C2777904410 @default.
- W2768793217 hasConcept C31972630 @default.
- W2768793217 hasConcept C41008148 @default.
- W2768793217 hasConcept C43521106 @default.
- W2768793217 hasConcept C519991488 @default.
- W2768793217 hasConcept C54170458 @default.
- W2768793217 hasConcept C9417928 @default.
- W2768793217 hasConceptScore W2768793217C111919701 @default.
- W2768793217 hasConceptScore W2768793217C115961682 @default.
- W2768793217 hasConceptScore W2768793217C154945302 @default.
- W2768793217 hasConceptScore W2768793217C199360897 @default.