Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768919152> ?p ?o ?g. }
- W2768919152 endingPage "27102" @default.
- W2768919152 startingPage "27091" @default.
- W2768919152 abstract "Reinforcement learning (RL) has distinguished itself as a prominent learning method to augment the efficacy of autonomous systems. Recent advances in deep learning studies have complemented existing RL methods and led to a crucial breakthrough in the effort of applying RL to automation and robotics. Artificial agents based on deep RL can take selective and intelligent actions comparable with those of a human to maximize the feedback reward from the interactive environment. In this paper, we survey recent developments in the literature regarding deep RL methods for building human-level agents. As a result, prominent studies that involve modeling every aspect of a human-level agent will be examined. We also provide an overview of constructing a framework for prospective autonomous systems. Moreover, various toolkits and frameworks are suggested to facilitate the development of deep RL methods. Finally, we open a discussion that potentially raises a range of future research directions in deep RL." @default.
- W2768919152 created "2017-12-04" @default.
- W2768919152 creator A5015293969 @default.
- W2768919152 creator A5083975154 @default.
- W2768919152 creator A5085593383 @default.
- W2768919152 date "2017-01-01" @default.
- W2768919152 modified "2023-10-03" @default.
- W2768919152 title "System Design Perspective for Human-Level Agents Using Deep Reinforcement Learning: A Survey" @default.
- W2768919152 cites W1542941925 @default.
- W2768919152 cites W1625390266 @default.
- W2768919152 cites W1969466259 @default.
- W2768919152 cites W1977655452 @default.
- W2768919152 cites W1979071892 @default.
- W2768919152 cites W1981025032 @default.
- W2768919152 cites W1981184437 @default.
- W2768919152 cites W2012204020 @default.
- W2768919152 cites W2016053056 @default.
- W2768919152 cites W2056568601 @default.
- W2768919152 cites W2060277733 @default.
- W2768919152 cites W2105850748 @default.
- W2768919152 cites W2109910161 @default.
- W2768919152 cites W2117726420 @default.
- W2768919152 cites W2121517924 @default.
- W2768919152 cites W2126316555 @default.
- W2768919152 cites W2127412976 @default.
- W2768919152 cites W2139418546 @default.
- W2768919152 cites W2145339207 @default.
- W2768919152 cites W2155273149 @default.
- W2768919152 cites W2250660307 @default.
- W2768919152 cites W2257979135 @default.
- W2768919152 cites W2292533394 @default.
- W2768919152 cites W2402164873 @default.
- W2768919152 cites W2424347275 @default.
- W2768919152 cites W2560647685 @default.
- W2768919152 cites W2736506089 @default.
- W2768919152 cites W2787259794 @default.
- W2768919152 cites W2911296969 @default.
- W2768919152 cites W2949945034 @default.
- W2768919152 cites W2963658727 @default.
- W2768919152 cites W3103780890 @default.
- W2768919152 cites W3103882218 @default.
- W2768919152 cites W3207742429 @default.
- W2768919152 cites W32403112 @default.
- W2768919152 cites W4205947740 @default.
- W2768919152 cites W4246262524 @default.
- W2768919152 cites W4249441547 @default.
- W2768919152 cites W4362203700 @default.
- W2768919152 cites W99485931 @default.
- W2768919152 doi "https://doi.org/10.1109/access.2017.2777827" @default.
- W2768919152 hasPublicationYear "2017" @default.
- W2768919152 type Work @default.
- W2768919152 sameAs 2768919152 @default.
- W2768919152 citedByCount "72" @default.
- W2768919152 countsByYear W27689191522018 @default.
- W2768919152 countsByYear W27689191522019 @default.
- W2768919152 countsByYear W27689191522020 @default.
- W2768919152 countsByYear W27689191522021 @default.
- W2768919152 countsByYear W27689191522022 @default.
- W2768919152 countsByYear W27689191522023 @default.
- W2768919152 crossrefType "journal-article" @default.
- W2768919152 hasAuthorship W2768919152A5015293969 @default.
- W2768919152 hasAuthorship W2768919152A5083975154 @default.
- W2768919152 hasAuthorship W2768919152A5085593383 @default.
- W2768919152 hasBestOaLocation W27689191521 @default.
- W2768919152 hasConcept C107457646 @default.
- W2768919152 hasConcept C108583219 @default.
- W2768919152 hasConcept C115901376 @default.
- W2768919152 hasConcept C119857082 @default.
- W2768919152 hasConcept C12713177 @default.
- W2768919152 hasConcept C127413603 @default.
- W2768919152 hasConcept C13687954 @default.
- W2768919152 hasConcept C154945302 @default.
- W2768919152 hasConcept C34413123 @default.
- W2768919152 hasConcept C41008148 @default.
- W2768919152 hasConcept C78519656 @default.
- W2768919152 hasConcept C90509273 @default.
- W2768919152 hasConcept C97541855 @default.
- W2768919152 hasConceptScore W2768919152C107457646 @default.
- W2768919152 hasConceptScore W2768919152C108583219 @default.
- W2768919152 hasConceptScore W2768919152C115901376 @default.
- W2768919152 hasConceptScore W2768919152C119857082 @default.
- W2768919152 hasConceptScore W2768919152C12713177 @default.
- W2768919152 hasConceptScore W2768919152C127413603 @default.
- W2768919152 hasConceptScore W2768919152C13687954 @default.
- W2768919152 hasConceptScore W2768919152C154945302 @default.
- W2768919152 hasConceptScore W2768919152C34413123 @default.
- W2768919152 hasConceptScore W2768919152C41008148 @default.
- W2768919152 hasConceptScore W2768919152C78519656 @default.
- W2768919152 hasConceptScore W2768919152C90509273 @default.
- W2768919152 hasConceptScore W2768919152C97541855 @default.
- W2768919152 hasLocation W27689191521 @default.
- W2768919152 hasLocation W27689191522 @default.
- W2768919152 hasOpenAccess W2768919152 @default.
- W2768919152 hasPrimaryLocation W27689191521 @default.
- W2768919152 hasRelatedWork W2767518918 @default.
- W2768919152 hasRelatedWork W2797862905 @default.
- W2768919152 hasRelatedWork W3014300295 @default.
- W2768919152 hasRelatedWork W4223943233 @default.