Matches in SemOpenAlex for { <https://semopenalex.org/work/W2768989874> ?p ?o ?g. }
- W2768989874 endingPage "96" @default.
- W2768989874 startingPage "81" @default.
- W2768989874 abstract "Wireless sensor networks (WSNs) which consist of miscellaneous sensors are used frequently in monitoring vital equipment. Benefiting from the development of data mining technologies, the massive data generated by sensors facilitate condition monitoring and fault diagnosis. However, too much data increase storage space, energy consumption, and computing resource, which can be considered fatal weaknesses for a WSN with limited resources. This study investigates a new method for motor bearings condition monitoring and fault diagnosis using the undersampled vibration signals acquired from a WSN. The proposed method, which is a fusion of the kurtogram, analog domain bandpass filtering, bandpass sampling, and demodulated resonance technique, can reduce the sampled data length while retaining the monitoring and diagnosis performance. A WSN prototype was designed, and simulations and experiments were conducted to evaluate the effectiveness and efficiency of the proposed method. Experimental results indicated that the sampled data length and transmission time of the proposed method result in a decrease of over 80% in comparison with that of the traditional method. Therefore, the proposed method indicates potential applications on condition monitoring and fault diagnosis of motor bearings installed in remote areas, such as wind farms and offshore platforms." @default.
- W2768989874 created "2017-12-04" @default.
- W2768989874 creator A5015858544 @default.
- W2768989874 creator A5030712337 @default.
- W2768989874 creator A5039325749 @default.
- W2768989874 creator A5057517079 @default.
- W2768989874 creator A5075789912 @default.
- W2768989874 creator A5085025467 @default.
- W2768989874 date "2018-02-01" @default.
- W2768989874 modified "2023-10-18" @default.
- W2768989874 title "Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network" @default.
- W2768989874 cites W1974081747 @default.
- W2768989874 cites W1979117586 @default.
- W2768989874 cites W1980948492 @default.
- W2768989874 cites W1984516393 @default.
- W2768989874 cites W2023340018 @default.
- W2768989874 cites W2028119131 @default.
- W2768989874 cites W2033800551 @default.
- W2768989874 cites W2055978895 @default.
- W2768989874 cites W2060304859 @default.
- W2768989874 cites W2064667159 @default.
- W2768989874 cites W2067376192 @default.
- W2768989874 cites W2067802406 @default.
- W2768989874 cites W2071211330 @default.
- W2768989874 cites W2072191144 @default.
- W2768989874 cites W2089181630 @default.
- W2768989874 cites W2097868227 @default.
- W2768989874 cites W2109622017 @default.
- W2768989874 cites W2139023432 @default.
- W2768989874 cites W2184192902 @default.
- W2768989874 cites W2196339088 @default.
- W2768989874 cites W2196489505 @default.
- W2768989874 cites W2236256746 @default.
- W2768989874 cites W2281423339 @default.
- W2768989874 cites W2291282297 @default.
- W2768989874 cites W2411208350 @default.
- W2768989874 cites W2416940920 @default.
- W2768989874 cites W2460920189 @default.
- W2768989874 cites W2488793338 @default.
- W2768989874 cites W2506416509 @default.
- W2768989874 cites W2509149017 @default.
- W2768989874 cites W2520449688 @default.
- W2768989874 cites W2521947227 @default.
- W2768989874 cites W2561850980 @default.
- W2768989874 cites W2023261290 @default.
- W2768989874 doi "https://doi.org/10.1016/j.jsv.2017.11.007" @default.
- W2768989874 hasPublicationYear "2018" @default.
- W2768989874 type Work @default.
- W2768989874 sameAs 2768989874 @default.
- W2768989874 citedByCount "67" @default.
- W2768989874 countsByYear W27689898742018 @default.
- W2768989874 countsByYear W27689898742019 @default.
- W2768989874 countsByYear W27689898742020 @default.
- W2768989874 countsByYear W27689898742021 @default.
- W2768989874 countsByYear W27689898742022 @default.
- W2768989874 countsByYear W27689898742023 @default.
- W2768989874 crossrefType "journal-article" @default.
- W2768989874 hasAuthorship W2768989874A5015858544 @default.
- W2768989874 hasAuthorship W2768989874A5030712337 @default.
- W2768989874 hasAuthorship W2768989874A5039325749 @default.
- W2768989874 hasAuthorship W2768989874A5057517079 @default.
- W2768989874 hasAuthorship W2768989874A5075789912 @default.
- W2768989874 hasAuthorship W2768989874A5085025467 @default.
- W2768989874 hasConcept C103824480 @default.
- W2768989874 hasConcept C119599485 @default.
- W2768989874 hasConcept C121332964 @default.
- W2768989874 hasConcept C127313418 @default.
- W2768989874 hasConcept C127413603 @default.
- W2768989874 hasConcept C154945302 @default.
- W2768989874 hasConcept C165205528 @default.
- W2768989874 hasConcept C175551986 @default.
- W2768989874 hasConcept C198394728 @default.
- W2768989874 hasConcept C24326235 @default.
- W2768989874 hasConcept C24590314 @default.
- W2768989874 hasConcept C2775846686 @default.
- W2768989874 hasConcept C31258907 @default.
- W2768989874 hasConcept C31972630 @default.
- W2768989874 hasConcept C33954974 @default.
- W2768989874 hasConcept C41008148 @default.
- W2768989874 hasConcept C555944384 @default.
- W2768989874 hasConcept C62520636 @default.
- W2768989874 hasConcept C76155785 @default.
- W2768989874 hasConcept C79403827 @default.
- W2768989874 hasConceptScore W2768989874C103824480 @default.
- W2768989874 hasConceptScore W2768989874C119599485 @default.
- W2768989874 hasConceptScore W2768989874C121332964 @default.
- W2768989874 hasConceptScore W2768989874C127313418 @default.
- W2768989874 hasConceptScore W2768989874C127413603 @default.
- W2768989874 hasConceptScore W2768989874C154945302 @default.
- W2768989874 hasConceptScore W2768989874C165205528 @default.
- W2768989874 hasConceptScore W2768989874C175551986 @default.
- W2768989874 hasConceptScore W2768989874C198394728 @default.
- W2768989874 hasConceptScore W2768989874C24326235 @default.
- W2768989874 hasConceptScore W2768989874C24590314 @default.
- W2768989874 hasConceptScore W2768989874C2775846686 @default.
- W2768989874 hasConceptScore W2768989874C31258907 @default.
- W2768989874 hasConceptScore W2768989874C31972630 @default.
- W2768989874 hasConceptScore W2768989874C33954974 @default.