Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769237371> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2769237371 abstract "Different information visualization techniques can be found in the literature due to the quantity and variety of data stored in computational systems. In this context, the classification of chart images becomes important because it allows various types of graphs to be detected automatically in different contexts, allowing a more specific processing for each type of visualization, for example, data extraction. Several techniques of image classification can be used, where the most common are based on the extraction of features of the images, and a later classification using these features. However, one technique that has been gaining prominence in the context of image classification is the Convolutional Neural Network (CNN). This technique is based on deep learning and, in a way, encapsulates the feature extraction process. In this way, the proposal of this article is to use an architecture of a client-server based model to do the chart image classification and later data extraction from this image. The main advantage is doing the CNN processing on the server side, so the application does not rely on client device limitations. For this, an image dataset was generated from the web, and it has ten classes of graphs. From the experiments done, it was seen that the use of this technique was feasible, and modifications in the architecture can be made as a proposal to improve the accuracy of the model." @default.
- W2769237371 created "2017-12-04" @default.
- W2769237371 creator A5000250404 @default.
- W2769237371 creator A5002928335 @default.
- W2769237371 creator A5006510068 @default.
- W2769237371 creator A5011685861 @default.
- W2769237371 creator A5030587769 @default.
- W2769237371 creator A5051693015 @default.
- W2769237371 creator A5065403588 @default.
- W2769237371 creator A5086910523 @default.
- W2769237371 date "2017-07-01" @default.
- W2769237371 modified "2023-10-18" @default.
- W2769237371 title "Architecture Proposal for Data Extraction of Chart Images Using Convolutional Neural Network" @default.
- W2769237371 cites W1087666452 @default.
- W2769237371 cites W1968123990 @default.
- W2769237371 cites W1982982494 @default.
- W2769237371 cites W1996134986 @default.
- W2769237371 cites W2043622810 @default.
- W2769237371 cites W2053604034 @default.
- W2769237371 cites W2091169704 @default.
- W2769237371 cites W2112796928 @default.
- W2769237371 cites W2167132694 @default.
- W2769237371 cites W2183697171 @default.
- W2769237371 cites W2194775991 @default.
- W2769237371 cites W2321900439 @default.
- W2769237371 cites W2510750606 @default.
- W2769237371 cites W2595457065 @default.
- W2769237371 doi "https://doi.org/10.1109/iv.2017.37" @default.
- W2769237371 hasPublicationYear "2017" @default.
- W2769237371 type Work @default.
- W2769237371 sameAs 2769237371 @default.
- W2769237371 citedByCount "8" @default.
- W2769237371 countsByYear W27692373712020 @default.
- W2769237371 countsByYear W27692373712021 @default.
- W2769237371 countsByYear W27692373712022 @default.
- W2769237371 countsByYear W27692373712023 @default.
- W2769237371 crossrefType "proceedings-article" @default.
- W2769237371 hasAuthorship W2769237371A5000250404 @default.
- W2769237371 hasAuthorship W2769237371A5002928335 @default.
- W2769237371 hasAuthorship W2769237371A5006510068 @default.
- W2769237371 hasAuthorship W2769237371A5011685861 @default.
- W2769237371 hasAuthorship W2769237371A5030587769 @default.
- W2769237371 hasAuthorship W2769237371A5051693015 @default.
- W2769237371 hasAuthorship W2769237371A5065403588 @default.
- W2769237371 hasAuthorship W2769237371A5086910523 @default.
- W2769237371 hasConcept C105795698 @default.
- W2769237371 hasConcept C111919701 @default.
- W2769237371 hasConcept C115961682 @default.
- W2769237371 hasConcept C119857082 @default.
- W2769237371 hasConcept C124101348 @default.
- W2769237371 hasConcept C151730666 @default.
- W2769237371 hasConcept C153180895 @default.
- W2769237371 hasConcept C154945302 @default.
- W2769237371 hasConcept C190812933 @default.
- W2769237371 hasConcept C2779343474 @default.
- W2769237371 hasConcept C33923547 @default.
- W2769237371 hasConcept C36464697 @default.
- W2769237371 hasConcept C41008148 @default.
- W2769237371 hasConcept C50644808 @default.
- W2769237371 hasConcept C52622490 @default.
- W2769237371 hasConcept C75294576 @default.
- W2769237371 hasConcept C81363708 @default.
- W2769237371 hasConcept C86803240 @default.
- W2769237371 hasConcept C98045186 @default.
- W2769237371 hasConceptScore W2769237371C105795698 @default.
- W2769237371 hasConceptScore W2769237371C111919701 @default.
- W2769237371 hasConceptScore W2769237371C115961682 @default.
- W2769237371 hasConceptScore W2769237371C119857082 @default.
- W2769237371 hasConceptScore W2769237371C124101348 @default.
- W2769237371 hasConceptScore W2769237371C151730666 @default.
- W2769237371 hasConceptScore W2769237371C153180895 @default.
- W2769237371 hasConceptScore W2769237371C154945302 @default.
- W2769237371 hasConceptScore W2769237371C190812933 @default.
- W2769237371 hasConceptScore W2769237371C2779343474 @default.
- W2769237371 hasConceptScore W2769237371C33923547 @default.
- W2769237371 hasConceptScore W2769237371C36464697 @default.
- W2769237371 hasConceptScore W2769237371C41008148 @default.
- W2769237371 hasConceptScore W2769237371C50644808 @default.
- W2769237371 hasConceptScore W2769237371C52622490 @default.
- W2769237371 hasConceptScore W2769237371C75294576 @default.
- W2769237371 hasConceptScore W2769237371C81363708 @default.
- W2769237371 hasConceptScore W2769237371C86803240 @default.
- W2769237371 hasConceptScore W2769237371C98045186 @default.
- W2769237371 hasLocation W27692373711 @default.
- W2769237371 hasOpenAccess W2769237371 @default.
- W2769237371 hasPrimaryLocation W27692373711 @default.
- W2769237371 hasRelatedWork W2770149305 @default.
- W2769237371 hasRelatedWork W2911497689 @default.
- W2769237371 hasRelatedWork W2952813363 @default.
- W2769237371 hasRelatedWork W2972076240 @default.
- W2769237371 hasRelatedWork W3014952856 @default.
- W2769237371 hasRelatedWork W3167930666 @default.
- W2769237371 hasRelatedWork W3176438653 @default.
- W2769237371 hasRelatedWork W4312465310 @default.
- W2769237371 hasRelatedWork W4360783045 @default.
- W2769237371 hasRelatedWork W4378678253 @default.
- W2769237371 isParatext "false" @default.
- W2769237371 isRetracted "false" @default.
- W2769237371 magId "2769237371" @default.
- W2769237371 workType "article" @default.