Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769388234> ?p ?o ?g. }
- W2769388234 abstract "Two-dimensional van der Waals materials grow into a hot and big field in condensed matter physics in the past decade. One particularly intriguing thing is the possibility to stack different layers together as one wish, like playing a Lego game, which can create artificial structures that do not exist in nature.These new structures can enable rich new physics from interlayer interaction: The interaction is strong, because in low-dimension materials electrons are exposed to the interface and are susceptible to other layers; and the screening of interaction is less prominent. The consequence is rich, not only from the extensive list of two-dimensional materials available nowadays, but also from the freedom of interlayer configuration, such as displacement and twist angle, which creates a gigantic parameter space to play with.On the other hand, however, the huge parameter space sometimes can make it challenging to describe consistently with a single picture. For example, the large periodicity or even incommensurability in van der Waals systems creates difficulty in using periodic boundary condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts involved to some extent prevent the establishment of a simple physical picture to understand the evolution of system properties in the parameter space of interlayer configuration.In the first part of the dissertation, I will focus on classification of the huge parameter space into subspaces, and introduce suitable theoretical approaches for each subspace. For each approach, I will discuss its validity, limitation, general solution, as well as a specific example of application demonstrating how one can obtain the most important effects of interlayer interaction with little computation efforts. Combining all the approaches introduced will provide an analytic solution to cover majority of the parameter space, which will be very helpful in understanding the intuitive physical picture behind the consequence of interlayer interaction, as well as its systematic evolution in the parameter space.Experimentally, optical spectroscopy is a powerful tool to investigate properties of materials, owing to its insusceptibility to extrinsic effects like defects, capability of obtaining information in large spectral range, and the sensitivity to not only density of states but also wavefunction through transition matrix element. Following the classification of interlayer interaction, I will present optical spectroscopy studies of three van der Waals systems: Two-dimensional few layer phosphorene, one-dimensional double-walled nanotubes, and two-dimensional graphene/hexagonal Boron Nitride heterostructure. Experimental results exhibit rich and distinctively different effects of interlayer interaction in these systems, as a demonstration of the colorful physics from the large parameter space. On the other hand, all these cases can be well-described by the methods developed in the theory part, which explains experimental results quantitatively through only a few parameters each with clear physical meaning. Therefore, the formalism given here, both from theoretical and experimental aspects, offers a generally useful methodology to study, understand and design van der Waals materials for both fascinating physics and novel applications." @default.
- W2769388234 created "2017-12-04" @default.
- W2769388234 creator A5078101594 @default.
- W2769388234 date "2017-01-01" @default.
- W2769388234 modified "2023-09-24" @default.
- W2769388234 title "Engineering Low Dimensional Materials with van der Waals Interaction" @default.
- W2769388234 cites W1488440066 @default.
- W2769388234 cites W1553988388 @default.
- W2769388234 cites W1564068500 @default.
- W2769388234 cites W1597159486 @default.
- W2769388234 cites W1721767752 @default.
- W2769388234 cites W1902819934 @default.
- W2769388234 cites W1969144205 @default.
- W2769388234 cites W1970315985 @default.
- W2769388234 cites W1972607608 @default.
- W2769388234 cites W1973042500 @default.
- W2769388234 cites W1973517105 @default.
- W2769388234 cites W1977838850 @default.
- W2769388234 cites W1982318259 @default.
- W2769388234 cites W1986980084 @default.
- W2769388234 cites W1988262302 @default.
- W2769388234 cites W1989506279 @default.
- W2769388234 cites W1992506968 @default.
- W2769388234 cites W1994926480 @default.
- W2769388234 cites W2012978849 @default.
- W2769388234 cites W2013144732 @default.
- W2769388234 cites W2014935324 @default.
- W2769388234 cites W2018958741 @default.
- W2769388234 cites W2021275797 @default.
- W2769388234 cites W2021312954 @default.
- W2769388234 cites W2021621392 @default.
- W2769388234 cites W2021929784 @default.
- W2769388234 cites W2025655190 @default.
- W2769388234 cites W2026320244 @default.
- W2769388234 cites W2027881475 @default.
- W2769388234 cites W2028851243 @default.
- W2769388234 cites W2030164271 @default.
- W2769388234 cites W2030628997 @default.
- W2769388234 cites W2031654810 @default.
- W2769388234 cites W2032019872 @default.
- W2769388234 cites W2037440854 @default.
- W2769388234 cites W2038531793 @default.
- W2769388234 cites W2041311241 @default.
- W2769388234 cites W2041948694 @default.
- W2769388234 cites W2049632862 @default.
- W2769388234 cites W2050949257 @default.
- W2769388234 cites W2053277821 @default.
- W2769388234 cites W2053478990 @default.
- W2769388234 cites W2054460584 @default.
- W2769388234 cites W2056109893 @default.
- W2769388234 cites W2058122340 @default.
- W2769388234 cites W2068824512 @default.
- W2769388234 cites W2070425256 @default.
- W2769388234 cites W2071007511 @default.
- W2769388234 cites W2076973078 @default.
- W2769388234 cites W2077232836 @default.
- W2769388234 cites W2080516950 @default.
- W2769388234 cites W2083469461 @default.
- W2769388234 cites W2087863452 @default.
- W2769388234 cites W2092044679 @default.
- W2769388234 cites W2093021361 @default.
- W2769388234 cites W2095238210 @default.
- W2769388234 cites W2102415385 @default.
- W2769388234 cites W2105685140 @default.
- W2769388234 cites W2113788261 @default.
- W2769388234 cites W2118492507 @default.
- W2769388234 cites W2119882629 @default.
- W2769388234 cites W2123510746 @default.
- W2769388234 cites W2125284466 @default.
- W2769388234 cites W2126811285 @default.
- W2769388234 cites W2127169435 @default.
- W2769388234 cites W2129515233 @default.
- W2769388234 cites W2133980286 @default.
- W2769388234 cites W2135350045 @default.
- W2769388234 cites W2136595562 @default.
- W2769388234 cites W2137096678 @default.
- W2769388234 cites W2138159532 @default.
- W2769388234 cites W2150315430 @default.
- W2769388234 cites W2150559554 @default.
- W2769388234 cites W2152829398 @default.
- W2769388234 cites W2162897396 @default.
- W2769388234 cites W2167431156 @default.
- W2769388234 cites W2238139783 @default.
- W2769388234 cites W2322299378 @default.
- W2769388234 cites W2533215342 @default.
- W2769388234 cites W2579503212 @default.
- W2769388234 cites W3101938246 @default.
- W2769388234 cites W926827295 @default.
- W2769388234 hasPublicationYear "2017" @default.
- W2769388234 type Work @default.
- W2769388234 sameAs 2769388234 @default.
- W2769388234 citedByCount "0" @default.
- W2769388234 crossrefType "journal-article" @default.
- W2769388234 hasAuthorship W2769388234A5078101594 @default.
- W2769388234 hasConcept C111919701 @default.
- W2769388234 hasConcept C120665830 @default.
- W2769388234 hasConcept C121332964 @default.
- W2769388234 hasConcept C12362212 @default.
- W2769388234 hasConcept C126061179 @default.
- W2769388234 hasConcept C192209626 @default.