Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769432661> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W2769432661 endingPage "125" @default.
- W2769432661 startingPage "116" @default.
- W2769432661 abstract "Driving is one of the common activities in people’s everyday life and therefore improving driving skill to reduce car crashes is an important issue. Even though a lot of studies and work has been done on road and vehicle designs to improve driver’s safety yet the total number of car crashes is increasing day by day. Therefore, the most factors that cause an accident is fatigue driver rather than other factors which are distraction, speeding, drinking driver, drugs and depression. To prevent car crashes that occur due to drowsy driver, it is essential to have an assistive system that monitors the vigilance level of driver and alert the driver in case of drowsy detection. This system presents a drowsy detection system based on eye detection of the driver. Vision-based approach is adopted to detect drowsy eye because other developed approaches are either intrusive (physical approach) that makes the driver uncomfortable or less sensitive (vehicle based approach). The data collected from 26 volunteers will have four (4) different type of image. Thus, the total input will be 10,800 nodes. This thesis will be classified into two (2) outputs which are drowsy eye and non-drowsy eye. The algorithm that will be used is Back-propagation Neural Network (BPNN) and will be applied in MATLAB software. The experimental result shows that this system could achieve 98.1% accuracy." @default.
- W2769432661 created "2017-12-04" @default.
- W2769432661 creator A5009656037 @default.
- W2769432661 creator A5019136296 @default.
- W2769432661 creator A5073742692 @default.
- W2769432661 date "2017-01-01" @default.
- W2769432661 modified "2023-09-24" @default.
- W2769432661 title "Eye Detection for Drowsy Driver Using Artificial Neural Network" @default.
- W2769432661 cites W1484788869 @default.
- W2769432661 cites W1996754940 @default.
- W2769432661 cites W2008268810 @default.
- W2769432661 cites W2047749266 @default.
- W2769432661 cites W2083638830 @default.
- W2769432661 cites W2089991333 @default.
- W2769432661 cites W2120598715 @default.
- W2769432661 doi "https://doi.org/10.1007/978-981-10-7242-0_10" @default.
- W2769432661 hasPublicationYear "2017" @default.
- W2769432661 type Work @default.
- W2769432661 sameAs 2769432661 @default.
- W2769432661 citedByCount "3" @default.
- W2769432661 countsByYear W27694326612018 @default.
- W2769432661 countsByYear W27694326612022 @default.
- W2769432661 crossrefType "book-chapter" @default.
- W2769432661 hasAuthorship W2769432661A5009656037 @default.
- W2769432661 hasAuthorship W2769432661A5019136296 @default.
- W2769432661 hasAuthorship W2769432661A5073742692 @default.
- W2769432661 hasConcept C154945302 @default.
- W2769432661 hasConcept C41008148 @default.
- W2769432661 hasConcept C50644808 @default.
- W2769432661 hasConceptScore W2769432661C154945302 @default.
- W2769432661 hasConceptScore W2769432661C41008148 @default.
- W2769432661 hasConceptScore W2769432661C50644808 @default.
- W2769432661 hasLocation W27694326611 @default.
- W2769432661 hasOpenAccess W2769432661 @default.
- W2769432661 hasPrimaryLocation W27694326611 @default.
- W2769432661 hasRelatedWork W2093578348 @default.
- W2769432661 hasRelatedWork W2159443810 @default.
- W2769432661 hasRelatedWork W2358668433 @default.
- W2769432661 hasRelatedWork W2376932109 @default.
- W2769432661 hasRelatedWork W2386387936 @default.
- W2769432661 hasRelatedWork W2390279801 @default.
- W2769432661 hasRelatedWork W2748952813 @default.
- W2769432661 hasRelatedWork W2899084033 @default.
- W2769432661 hasRelatedWork W644753246 @default.
- W2769432661 hasRelatedWork W1629725936 @default.
- W2769432661 isParatext "false" @default.
- W2769432661 isRetracted "false" @default.
- W2769432661 magId "2769432661" @default.
- W2769432661 workType "book-chapter" @default.