Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769442022> ?p ?o ?g. }
- W2769442022 endingPage "128" @default.
- W2769442022 startingPage "109" @default.
- W2769442022 abstract "The present study aims to find new features that support the differential diagnosis of neuromuscular diseases. Scanning EMG is an experimental method developed for understanding the motor unit organization and for observing temporal and spatial characteristics of motor unit’s electrical activity. A motor unit consists of a motor neuron and muscle fibers that are innervated by its motor neuron. Both simulation and biological data on neuromuscular diseases are considered in this study. Biological data were acquired from 3 patients with neurogenic involvement (2 with poliomyelitis sequela and 1 with spinal muscular atrophy), 2 patients with myopathy (1 with inflammatory myopathy and 1 with muscular dystrophy) and 4 healthy participants. Seven features are extracted by specifications of neuromuscular diseases and characteristics of EMG signals. These features are maximum amplitude, spike duration, the number of peaks, maximum amplitude x spike duration, number of peaks x spike duration, the ratio of the power outside the activity corridor to the power inside the activity corridor and the number of peaks outside of the activity corridor. The autocorrelation function of the sum of scanning EMG signals is effective in determining the activity corridor of these signals and the spike duration can be determined more easily by using the activity corridor. Wavelet transform based noise reduction and the windowing method are proposed for calculating the features correctly. By this method, spike duration and the number of peaks should be able to be calculated more precisely. It is confirmed that if the signals are filtered by a high pass filter with a cut off frequency of 2 KHz, the calculation of the number of peaks should be easier. While maximum amplitude and maximum amplitude times spike duration are found to be significant for diagnosing neurogenic diseases, other features are found to be significant for all groups by ANOVA test. It is determined that which features are more effective for differential diagnosis and the dataset that contains normal people and patients is classified using multi-layer perceptron (MLP), radial basis function network (RBF), support vector machines (SVM) and k nearest neighbor algorithm (k-NN). The best accuracy is obtained as 85% with MLP network." @default.
- W2769442022 created "2017-12-04" @default.
- W2769442022 creator A5007177815 @default.
- W2769442022 creator A5026450428 @default.
- W2769442022 creator A5030353343 @default.
- W2769442022 creator A5039797488 @default.
- W2769442022 creator A5067089217 @default.
- W2769442022 creator A5085792302 @default.
- W2769442022 date "2018-03-01" @default.
- W2769442022 modified "2023-09-27" @default.
- W2769442022 title "New features for scanned bioelectrical activity of motor unit in health and disease" @default.
- W2769442022 cites W1574485528 @default.
- W2769442022 cites W197776973 @default.
- W2769442022 cites W1997874270 @default.
- W2769442022 cites W2001027712 @default.
- W2769442022 cites W2003168003 @default.
- W2769442022 cites W2009288077 @default.
- W2769442022 cites W2020994261 @default.
- W2769442022 cites W2023795226 @default.
- W2769442022 cites W2025880145 @default.
- W2769442022 cites W2031838346 @default.
- W2769442022 cites W2031926075 @default.
- W2769442022 cites W2071750802 @default.
- W2769442022 cites W2076612966 @default.
- W2769442022 cites W2077034077 @default.
- W2769442022 cites W2085196225 @default.
- W2769442022 cites W2088339072 @default.
- W2769442022 cites W2099505205 @default.
- W2769442022 cites W2102195138 @default.
- W2769442022 cites W2113115364 @default.
- W2769442022 cites W2138438930 @default.
- W2769442022 cites W2161770703 @default.
- W2769442022 cites W2163224797 @default.
- W2769442022 cites W2170843184 @default.
- W2769442022 cites W2292305145 @default.
- W2769442022 cites W2400949989 @default.
- W2769442022 cites W2588413600 @default.
- W2769442022 cites W4240970728 @default.
- W2769442022 cites W4297629130 @default.
- W2769442022 doi "https://doi.org/10.1016/j.bspc.2017.11.011" @default.
- W2769442022 hasPublicationYear "2018" @default.
- W2769442022 type Work @default.
- W2769442022 sameAs 2769442022 @default.
- W2769442022 citedByCount "5" @default.
- W2769442022 countsByYear W27694420222018 @default.
- W2769442022 countsByYear W27694420222019 @default.
- W2769442022 countsByYear W27694420222020 @default.
- W2769442022 countsByYear W27694420222022 @default.
- W2769442022 countsByYear W27694420222023 @default.
- W2769442022 crossrefType "journal-article" @default.
- W2769442022 hasAuthorship W2769442022A5007177815 @default.
- W2769442022 hasAuthorship W2769442022A5026450428 @default.
- W2769442022 hasAuthorship W2769442022A5030353343 @default.
- W2769442022 hasAuthorship W2769442022A5039797488 @default.
- W2769442022 hasAuthorship W2769442022A5067089217 @default.
- W2769442022 hasAuthorship W2769442022A5085792302 @default.
- W2769442022 hasConcept C112758219 @default.
- W2769442022 hasConcept C115903868 @default.
- W2769442022 hasConcept C121332964 @default.
- W2769442022 hasConcept C142724271 @default.
- W2769442022 hasConcept C153180895 @default.
- W2769442022 hasConcept C154945302 @default.
- W2769442022 hasConcept C15744967 @default.
- W2769442022 hasConcept C169760540 @default.
- W2769442022 hasConcept C24890656 @default.
- W2769442022 hasConcept C2776356578 @default.
- W2769442022 hasConcept C2776752467 @default.
- W2769442022 hasConcept C2777515770 @default.
- W2769442022 hasConcept C2779134260 @default.
- W2769442022 hasConcept C2780775167 @default.
- W2769442022 hasConcept C2781390188 @default.
- W2769442022 hasConcept C2781425072 @default.
- W2769442022 hasConcept C41008148 @default.
- W2769442022 hasConcept C71924100 @default.
- W2769442022 hasConcept C99508421 @default.
- W2769442022 hasConceptScore W2769442022C112758219 @default.
- W2769442022 hasConceptScore W2769442022C115903868 @default.
- W2769442022 hasConceptScore W2769442022C121332964 @default.
- W2769442022 hasConceptScore W2769442022C142724271 @default.
- W2769442022 hasConceptScore W2769442022C153180895 @default.
- W2769442022 hasConceptScore W2769442022C154945302 @default.
- W2769442022 hasConceptScore W2769442022C15744967 @default.
- W2769442022 hasConceptScore W2769442022C169760540 @default.
- W2769442022 hasConceptScore W2769442022C24890656 @default.
- W2769442022 hasConceptScore W2769442022C2776356578 @default.
- W2769442022 hasConceptScore W2769442022C2776752467 @default.
- W2769442022 hasConceptScore W2769442022C2777515770 @default.
- W2769442022 hasConceptScore W2769442022C2779134260 @default.
- W2769442022 hasConceptScore W2769442022C2780775167 @default.
- W2769442022 hasConceptScore W2769442022C2781390188 @default.
- W2769442022 hasConceptScore W2769442022C2781425072 @default.
- W2769442022 hasConceptScore W2769442022C41008148 @default.
- W2769442022 hasConceptScore W2769442022C71924100 @default.
- W2769442022 hasConceptScore W2769442022C99508421 @default.
- W2769442022 hasLocation W27694420221 @default.
- W2769442022 hasOpenAccess W2769442022 @default.
- W2769442022 hasPrimaryLocation W27694420221 @default.
- W2769442022 hasRelatedWork W2045978684 @default.