Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769448511> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2769448511 endingPage "3" @default.
- W2769448511 startingPage "3" @default.
- W2769448511 abstract "<h3>Background</h3> Colorectal cancer is a malignant tumour which endangers human lives. With the rapid development of molecular medicine, a great deal of research related to clinic-omics data has been published. Mining the association of genotype-phenotype data has been increasingly recognised as an effective way for early stage prediction of colorectal cancer. <h3>Methods</h3> In this study, a literature text mining method was proposed for biomedical objects association using the Vector Space Model (VSM). For each article, we represented biomedical objects as the vectors of VSM. Gene symbols were denoted as the genotype objects, and the MeSH terms annotated from the literature were denoted as the phenotype objects. A TF-IDF algorithm was then used to quantitatively calculate the correlation between genotype and phenotype objects. <h3>Results</h3> A total of 473 242 articles related to colorectal cancer were acquired from the MEDLINE database. We finally obtained 77 clinical terms and 490 genes highly related to colorectal cancer, resulting in 2125 associations between these clinical terms and genes. Biological pathway analysis by KEGG database demonstrated that genotype-phenotype association mining from our study covers all stages of the development of colorectal cancer, a number of which were at the early stage. These findings might become a beneficial complement of cancer translation research. <h3>Conclusion</h3> Our study provides a biomedical literature mining method for cancer translational research such as construction of a precision medicine knowledge base, biomarker prediction/evaluation, and knowledge discovery in texts. <h3>Acknowledgements</h3> Supported by the National key research and development program of China (No. 2016YFC0901703), and the Public Projects of Zhejiang Province, China (No. 2017C33064)." @default.
- W2769448511 created "2017-12-04" @default.
- W2769448511 creator A5003738052 @default.
- W2769448511 creator A5008062035 @default.
- W2769448511 creator A5010708726 @default.
- W2769448511 creator A5037421077 @default.
- W2769448511 creator A5077637846 @default.
- W2769448511 creator A5087100658 @default.
- W2769448511 date "2017-10-01" @default.
- W2769448511 modified "2023-10-06" @default.
- W2769448511 title "Exploring the Genotype-Phenotype Associations of Colorectal Cancer using Vector Space Model" @default.
- W2769448511 doi "https://doi.org/10.1136/jim-2017-mebabstracts.9" @default.
- W2769448511 hasPublicationYear "2017" @default.
- W2769448511 type Work @default.
- W2769448511 sameAs 2769448511 @default.
- W2769448511 citedByCount "0" @default.
- W2769448511 crossrefType "journal-article" @default.
- W2769448511 hasAuthorship W2769448511A5003738052 @default.
- W2769448511 hasAuthorship W2769448511A5008062035 @default.
- W2769448511 hasAuthorship W2769448511A5010708726 @default.
- W2769448511 hasAuthorship W2769448511A5037421077 @default.
- W2769448511 hasAuthorship W2769448511A5077637846 @default.
- W2769448511 hasAuthorship W2769448511A5087100658 @default.
- W2769448511 hasConcept C104317684 @default.
- W2769448511 hasConcept C121608353 @default.
- W2769448511 hasConcept C124101348 @default.
- W2769448511 hasConcept C127716648 @default.
- W2769448511 hasConcept C135763542 @default.
- W2769448511 hasConcept C163763905 @default.
- W2769448511 hasConcept C200844832 @default.
- W2769448511 hasConcept C41008148 @default.
- W2769448511 hasConcept C526805850 @default.
- W2769448511 hasConcept C54355233 @default.
- W2769448511 hasConcept C60644358 @default.
- W2769448511 hasConcept C70721500 @default.
- W2769448511 hasConcept C71924100 @default.
- W2769448511 hasConcept C86803240 @default.
- W2769448511 hasConceptScore W2769448511C104317684 @default.
- W2769448511 hasConceptScore W2769448511C121608353 @default.
- W2769448511 hasConceptScore W2769448511C124101348 @default.
- W2769448511 hasConceptScore W2769448511C127716648 @default.
- W2769448511 hasConceptScore W2769448511C135763542 @default.
- W2769448511 hasConceptScore W2769448511C163763905 @default.
- W2769448511 hasConceptScore W2769448511C200844832 @default.
- W2769448511 hasConceptScore W2769448511C41008148 @default.
- W2769448511 hasConceptScore W2769448511C526805850 @default.
- W2769448511 hasConceptScore W2769448511C54355233 @default.
- W2769448511 hasConceptScore W2769448511C60644358 @default.
- W2769448511 hasConceptScore W2769448511C70721500 @default.
- W2769448511 hasConceptScore W2769448511C71924100 @default.
- W2769448511 hasConceptScore W2769448511C86803240 @default.
- W2769448511 hasIssue "7_suppl" @default.
- W2769448511 hasLocation W27694485111 @default.
- W2769448511 hasOpenAccess W2769448511 @default.
- W2769448511 hasPrimaryLocation W27694485111 @default.
- W2769448511 hasRelatedWork W1535741351 @default.
- W2769448511 hasRelatedWork W2066479759 @default.
- W2769448511 hasRelatedWork W2071724948 @default.
- W2769448511 hasRelatedWork W2076386802 @default.
- W2769448511 hasRelatedWork W2092913562 @default.
- W2769448511 hasRelatedWork W2914177579 @default.
- W2769448511 hasRelatedWork W3003578468 @default.
- W2769448511 hasRelatedWork W3032391085 @default.
- W2769448511 hasRelatedWork W3212418185 @default.
- W2769448511 hasRelatedWork W4319333460 @default.
- W2769448511 hasVolume "65" @default.
- W2769448511 isParatext "false" @default.
- W2769448511 isRetracted "false" @default.
- W2769448511 magId "2769448511" @default.
- W2769448511 workType "article" @default.