Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769475979> ?p ?o ?g. }
- W2769475979 abstract "The focus of this thesis is to study computationally the relation between discourse properties and textual complexity. Specifically, we explored three research questions.The first research question tries to find out to what degree discourse-level properties can be used to predict the complexity level of a text. To do so, we considered three types of discourse-level properties: (1) the realization of discourse relations and the representation of discourse relations in terms of (2) the choice of discourse relation and (3) discourse marker. Using datasets from standard corpora in the field of discourse analysis and text simplification, we developed a supervised machine learning model for pairwise text complexity assessment and compared these properties with more linguistic features. Our results show that the use of only discourse features performed statistically as well as using traditional linguistic features. Thus, we can conclude a strong correlation between discourse properties and complexity level.The second question that we explored is how exactly does the complexity level of a text influence its discourse-level linguistic choices? To address this question, we conducted a corpus analysis of the Simple English Wikipedia, the largest annotated corpus based on complexity level. Our analysis used the 16 discourse relations defined in the DLTAG framework and focused on explicit relations. Our results show that the distribution of discourse relations is not influenced by a text’s complexity level; but how these are signalled is.Finally, given the results of our corpus analysis, our third research question tries to investigate if we can leverage these differences to mine parallel corpora across complexity levels to automatically discover alternative lexicalizations (AltLexes) of discourse markers. This work led to the automatic identification of 91 new AltLexes in two corpora: the Simple English Wikipedia and the Newsela corpora.Overall, this thesis demonstrates that a text’s complexity level and discourse level properties are indeed correlated. Discourse properties play an important role in the assessment of a text’s complexity level and should be taken into account in the complexity level assessment problem. In addition, we observed that the way that explicit discourse relations are signaled is influenced by textual complexity. Lastly, our thesis shows that the automatic identification of alternative lexializations of discourse markers can benefit from large-scale parallel corpora across complexity levels." @default.
- W2769475979 created "2017-12-04" @default.
- W2769475979 creator A5079220269 @default.
- W2769475979 date "2017-08-31" @default.
- W2769475979 modified "2023-09-23" @default.
- W2769475979 title "Computational Discourse Analysis Across Complexity Levels" @default.
- W2769475979 cites W13254153 @default.
- W2769475979 cites W139541648 @default.
- W2769475979 cites W1481128830 @default.
- W2769475979 cites W1483817654 @default.
- W2769475979 cites W1487132932 @default.
- W2769475979 cites W1489463938 @default.
- W2769475979 cites W1490729181 @default.
- W2769475979 cites W1492128830 @default.
- W2769475979 cites W1501229393 @default.
- W2769475979 cites W150688553 @default.
- W2769475979 cites W1507711477 @default.
- W2769475979 cites W1509228788 @default.
- W2769475979 cites W1520424381 @default.
- W2769475979 cites W1523525545 @default.
- W2769475979 cites W1576853665 @default.
- W2769475979 cites W1579838312 @default.
- W2769475979 cites W1597655096 @default.
- W2769475979 cites W1602722405 @default.
- W2769475979 cites W1632114991 @default.
- W2769475979 cites W1638924786 @default.
- W2769475979 cites W1704713987 @default.
- W2769475979 cites W174630521 @default.
- W2769475979 cites W175030052 @default.
- W2769475979 cites W1819903106 @default.
- W2769475979 cites W182831726 @default.
- W2769475979 cites W187058510 @default.
- W2769475979 cites W1936029161 @default.
- W2769475979 cites W1947735341 @default.
- W2769475979 cites W1952210680 @default.
- W2769475979 cites W1983778686 @default.
- W2769475979 cites W1985661114 @default.
- W2769475979 cites W1988230003 @default.
- W2769475979 cites W1996430422 @default.
- W2769475979 cites W2015765684 @default.
- W2769475979 cites W2019096529 @default.
- W2769475979 cites W2019416425 @default.
- W2769475979 cites W2019501487 @default.
- W2769475979 cites W2021521680 @default.
- W2769475979 cites W2027979414 @default.
- W2769475979 cites W2032558547 @default.
- W2769475979 cites W2036367260 @default.
- W2769475979 cites W2040448429 @default.
- W2769475979 cites W2063143844 @default.
- W2769475979 cites W2070016268 @default.
- W2769475979 cites W2077841165 @default.
- W2769475979 cites W2079092292 @default.
- W2769475979 cites W2081580037 @default.
- W2769475979 cites W2097333193 @default.
- W2769475979 cites W2099065344 @default.
- W2769475979 cites W2104950474 @default.
- W2769475979 cites W2108373063 @default.
- W2769475979 cites W2109462987 @default.
- W2769475979 cites W2109783296 @default.
- W2769475979 cites W2110286374 @default.
- W2769475979 cites W2117334662 @default.
- W2769475979 cites W2119168550 @default.
- W2769475979 cites W2120580278 @default.
- W2769475979 cites W2123866438 @default.
- W2769475979 cites W2124741472 @default.
- W2769475979 cites W2127413953 @default.
- W2769475979 cites W2131861279 @default.
- W2769475979 cites W2132083787 @default.
- W2769475979 cites W2135336649 @default.
- W2769475979 cites W2138030222 @default.
- W2769475979 cites W2139243841 @default.
- W2769475979 cites W2140676672 @default.
- W2769475979 cites W2147002563 @default.
- W2769475979 cites W2152000551 @default.
- W2769475979 cites W2153081451 @default.
- W2769475979 cites W2153982529 @default.
- W2769475979 cites W2154407881 @default.
- W2769475979 cites W2155424651 @default.
- W2769475979 cites W2156354361 @default.
- W2769475979 cites W2159947192 @default.
- W2769475979 cites W2166568249 @default.
- W2769475979 cites W2166957049 @default.
- W2769475979 cites W2167702024 @default.
- W2769475979 cites W2205402206 @default.
- W2769475979 cites W2250201115 @default.
- W2769475979 cites W2250265609 @default.
- W2769475979 cites W2250350946 @default.
- W2769475979 cites W2251044566 @default.
- W2769475979 cites W2251831371 @default.
- W2769475979 cites W2292103514 @default.
- W2769475979 cites W2320048127 @default.
- W2769475979 cites W2321470647 @default.
- W2769475979 cites W2468432491 @default.
- W2769475979 cites W2472403012 @default.
- W2769475979 cites W2508239101 @default.
- W2769475979 cites W2602143361 @default.
- W2769475979 cites W2775172274 @default.
- W2769475979 cites W2790687720 @default.
- W2769475979 cites W2918065816 @default.
- W2769475979 cites W2951950125 @default.