Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769718964> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2769718964 abstract "Wireless indoor localization is a key technology for the future Internet of things (IoT) paradigm. In this paper, we perform an experimental comparative study of machine learning-based localization schemes, such as k-nearest neighbor (k-NN) and variants of support vector machine (SVM), based on the received signal strength (RSS) measurements of the ambient frequency modulation (FM) and digital video broadcasting- terrestrial (DVB-T) signals in three real testbed environments. The consideration of readily available, ambient radio signals frees the need for dedicated radio transmitters. Noise-reduction techniques such as feature selection and ensemble learning are proposed in conjunction with SVM. Our results examine the performance comparisons between SVM and k-NN, as well as the performance comparisons of SVM-based methods incorporating different noise-reduction schemes, with noisy RSS data. Insights into the performance of learning- based localization schemes working with real database collected from real environments are provided." @default.
- W2769718964 created "2017-12-04" @default.
- W2769718964 creator A5044819982 @default.
- W2769718964 creator A5052576795 @default.
- W2769718964 creator A5036693263 @default.
- W2769718964 date "2017-06-01" @default.
- W2769718964 modified "2023-10-05" @default.
- W2769718964 title "A Comparative Study of Machine-Learning Indoor Localization Using FM and DVB-T Signals in Real Testbed Environments" @default.
- W2769718964 cites W1552356741 @default.
- W2769718964 cites W1912746293 @default.
- W2769718964 cites W1969595988 @default.
- W2769718964 cites W1981198439 @default.
- W2769718964 cites W1985926598 @default.
- W2769718964 cites W2001620149 @default.
- W2769718964 cites W2011502582 @default.
- W2769718964 cites W2023924316 @default.
- W2769718964 cites W2027902860 @default.
- W2769718964 cites W2034539150 @default.
- W2769718964 cites W2040834420 @default.
- W2769718964 cites W2050308670 @default.
- W2769718964 cites W2065933186 @default.
- W2769718964 cites W2075744751 @default.
- W2769718964 cites W2108482152 @default.
- W2769718964 cites W2129736664 @default.
- W2769718964 cites W2153635508 @default.
- W2769718964 cites W2156477559 @default.
- W2769718964 cites W2175418613 @default.
- W2769718964 cites W2315646777 @default.
- W2769718964 cites W2318454007 @default.
- W2769718964 cites W605727707 @default.
- W2769718964 cites W1486887938 @default.
- W2769718964 doi "https://doi.org/10.1109/vtcspring.2017.8108573" @default.
- W2769718964 hasPublicationYear "2017" @default.
- W2769718964 type Work @default.
- W2769718964 sameAs 2769718964 @default.
- W2769718964 citedByCount "6" @default.
- W2769718964 countsByYear W27697189642019 @default.
- W2769718964 countsByYear W27697189642020 @default.
- W2769718964 countsByYear W27697189642021 @default.
- W2769718964 crossrefType "proceedings-article" @default.
- W2769718964 hasAuthorship W2769718964A5036693263 @default.
- W2769718964 hasAuthorship W2769718964A5044819982 @default.
- W2769718964 hasAuthorship W2769718964A5052576795 @default.
- W2769718964 hasConcept C111919701 @default.
- W2769718964 hasConcept C119857082 @default.
- W2769718964 hasConcept C12267149 @default.
- W2769718964 hasConcept C154945302 @default.
- W2769718964 hasConcept C2385561 @default.
- W2769718964 hasConcept C26517878 @default.
- W2769718964 hasConcept C31258907 @default.
- W2769718964 hasConcept C31395832 @default.
- W2769718964 hasConcept C38652104 @default.
- W2769718964 hasConcept C41008148 @default.
- W2769718964 hasConcept C52622490 @default.
- W2769718964 hasConcept C551482933 @default.
- W2769718964 hasConcept C76155785 @default.
- W2769718964 hasConceptScore W2769718964C111919701 @default.
- W2769718964 hasConceptScore W2769718964C119857082 @default.
- W2769718964 hasConceptScore W2769718964C12267149 @default.
- W2769718964 hasConceptScore W2769718964C154945302 @default.
- W2769718964 hasConceptScore W2769718964C2385561 @default.
- W2769718964 hasConceptScore W2769718964C26517878 @default.
- W2769718964 hasConceptScore W2769718964C31258907 @default.
- W2769718964 hasConceptScore W2769718964C31395832 @default.
- W2769718964 hasConceptScore W2769718964C38652104 @default.
- W2769718964 hasConceptScore W2769718964C41008148 @default.
- W2769718964 hasConceptScore W2769718964C52622490 @default.
- W2769718964 hasConceptScore W2769718964C551482933 @default.
- W2769718964 hasConceptScore W2769718964C76155785 @default.
- W2769718964 hasLocation W27697189641 @default.
- W2769718964 hasOpenAccess W2769718964 @default.
- W2769718964 hasPrimaryLocation W27697189641 @default.
- W2769718964 hasRelatedWork W2051171091 @default.
- W2769718964 hasRelatedWork W2103543486 @default.
- W2769718964 hasRelatedWork W2165855359 @default.
- W2769718964 hasRelatedWork W2290207474 @default.
- W2769718964 hasRelatedWork W2291315001 @default.
- W2769718964 hasRelatedWork W2309512289 @default.
- W2769718964 hasRelatedWork W2343794604 @default.
- W2769718964 hasRelatedWork W2469724873 @default.
- W2769718964 hasRelatedWork W2903114539 @default.
- W2769718964 hasRelatedWork W2903390802 @default.
- W2769718964 hasRelatedWork W2922174720 @default.
- W2769718964 hasRelatedWork W2966818808 @default.
- W2769718964 hasRelatedWork W2988843457 @default.
- W2769718964 hasRelatedWork W3035359533 @default.
- W2769718964 hasRelatedWork W3106220687 @default.
- W2769718964 hasRelatedWork W3116869432 @default.
- W2769718964 hasRelatedWork W3159850628 @default.
- W2769718964 hasRelatedWork W3166608615 @default.
- W2769718964 hasRelatedWork W3167623696 @default.
- W2769718964 hasRelatedWork W3208818028 @default.
- W2769718964 isParatext "false" @default.
- W2769718964 isRetracted "false" @default.
- W2769718964 magId "2769718964" @default.
- W2769718964 workType "article" @default.