Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769845492> ?p ?o ?g. }
- W2769845492 endingPage "305" @default.
- W2769845492 startingPage "299" @default.
- W2769845492 abstract "To determine whether machine learning can accurately classify human papillomavirus (HPV) status of oropharyngeal squamous cell carcinoma (OPSCC) using computed tomography (CT)-based texture analysis.Texture analyses were retrospectively applied to regions of interest from OPSCC primary tumors on contrast-enhanced neck CT, and machine learning was used to create a model that classified HPV status with the highest accuracy. Results were compared against the blinded review of 2 neuroradiologists.The HPV-positive (n = 92) and -negative (n = 15) cohorts were well matched clinically. Neuroradiologist classification accuracies for HPV status (44.9%, 55.1%) were not significantly different (P = 0.13), and there was a lack of agreement between the 2 neuroradiologists (κ = -0.145). The best machine learning model had an accuracy of 75.7%, which was greater than either neuroradiologist (P < 0.001, P = 0.002).Useful diagnostic information regarding HPV infection can be extracted from the CT appearance of OPSCC beyond what is apparent to the trained human eye." @default.
- W2769845492 created "2017-12-04" @default.
- W2769845492 creator A5003694089 @default.
- W2769845492 creator A5012677271 @default.
- W2769845492 creator A5013358145 @default.
- W2769845492 creator A5014284572 @default.
- W2769845492 creator A5028548967 @default.
- W2769845492 creator A5042875532 @default.
- W2769845492 creator A5069823101 @default.
- W2769845492 creator A5078763626 @default.
- W2769845492 creator A5091805367 @default.
- W2769845492 date "2018-01-01" @default.
- W2769845492 modified "2023-10-01" @default.
- W2769845492 title "Computed Tomography-Based Texture Analysis to Determine Human Papillomavirus Status of Oropharyngeal Squamous Cell Carcinoma" @default.
- W2769845492 cites W1907421893 @default.
- W2769845492 cites W1960544623 @default.
- W2769845492 cites W1965170884 @default.
- W2769845492 cites W1968620779 @default.
- W2769845492 cites W1973182741 @default.
- W2769845492 cites W1983836223 @default.
- W2769845492 cites W2001068000 @default.
- W2769845492 cites W2002903570 @default.
- W2769845492 cites W2005145546 @default.
- W2769845492 cites W2008663786 @default.
- W2769845492 cites W2026398014 @default.
- W2769845492 cites W2036246634 @default.
- W2769845492 cites W2040466661 @default.
- W2769845492 cites W2044465660 @default.
- W2769845492 cites W2047274883 @default.
- W2769845492 cites W2049694710 @default.
- W2769845492 cites W2052295501 @default.
- W2769845492 cites W2071970335 @default.
- W2769845492 cites W2089262987 @default.
- W2769845492 cites W2097978020 @default.
- W2769845492 cites W2104167780 @default.
- W2769845492 cites W2118978333 @default.
- W2769845492 cites W2120254749 @default.
- W2769845492 cites W2138779768 @default.
- W2769845492 cites W2141274038 @default.
- W2769845492 cites W2142434083 @default.
- W2769845492 cites W2144692687 @default.
- W2769845492 cites W2148143831 @default.
- W2769845492 cites W2156490355 @default.
- W2769845492 cites W2161419360 @default.
- W2769845492 cites W2163352848 @default.
- W2769845492 cites W2166031702 @default.
- W2769845492 cites W2169631870 @default.
- W2769845492 cites W2174661749 @default.
- W2769845492 cites W2180878079 @default.
- W2769845492 cites W2316367947 @default.
- W2769845492 cites W2479624442 @default.
- W2769845492 cites W2603308445 @default.
- W2769845492 cites W2616891418 @default.
- W2769845492 doi "https://doi.org/10.1097/rct.0000000000000682" @default.
- W2769845492 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29189396" @default.
- W2769845492 hasPublicationYear "2018" @default.
- W2769845492 type Work @default.
- W2769845492 sameAs 2769845492 @default.
- W2769845492 citedByCount "23" @default.
- W2769845492 countsByYear W27698454922018 @default.
- W2769845492 countsByYear W27698454922019 @default.
- W2769845492 countsByYear W27698454922020 @default.
- W2769845492 countsByYear W27698454922021 @default.
- W2769845492 countsByYear W27698454922022 @default.
- W2769845492 countsByYear W27698454922023 @default.
- W2769845492 crossrefType "journal-article" @default.
- W2769845492 hasAuthorship W2769845492A5003694089 @default.
- W2769845492 hasAuthorship W2769845492A5012677271 @default.
- W2769845492 hasAuthorship W2769845492A5013358145 @default.
- W2769845492 hasAuthorship W2769845492A5014284572 @default.
- W2769845492 hasAuthorship W2769845492A5028548967 @default.
- W2769845492 hasAuthorship W2769845492A5042875532 @default.
- W2769845492 hasAuthorship W2769845492A5069823101 @default.
- W2769845492 hasAuthorship W2769845492A5078763626 @default.
- W2769845492 hasAuthorship W2769845492A5091805367 @default.
- W2769845492 hasConcept C115961682 @default.
- W2769845492 hasConcept C126322002 @default.
- W2769845492 hasConcept C126838900 @default.
- W2769845492 hasConcept C142724271 @default.
- W2769845492 hasConcept C143409427 @default.
- W2769845492 hasConcept C154945302 @default.
- W2769845492 hasConcept C2777546739 @default.
- W2769845492 hasConcept C2781195486 @default.
- W2769845492 hasConcept C2909330790 @default.
- W2769845492 hasConcept C2994532551 @default.
- W2769845492 hasConcept C3019992690 @default.
- W2769845492 hasConcept C3020132585 @default.
- W2769845492 hasConcept C41008148 @default.
- W2769845492 hasConcept C544519230 @default.
- W2769845492 hasConcept C71924100 @default.
- W2769845492 hasConceptScore W2769845492C115961682 @default.
- W2769845492 hasConceptScore W2769845492C126322002 @default.
- W2769845492 hasConceptScore W2769845492C126838900 @default.
- W2769845492 hasConceptScore W2769845492C142724271 @default.
- W2769845492 hasConceptScore W2769845492C143409427 @default.
- W2769845492 hasConceptScore W2769845492C154945302 @default.
- W2769845492 hasConceptScore W2769845492C2777546739 @default.
- W2769845492 hasConceptScore W2769845492C2781195486 @default.