Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769876677> ?p ?o ?g. }
- W2769876677 endingPage "205031211774098" @default.
- W2769876677 startingPage "205031211774098" @default.
- W2769876677 abstract "Objectives:Spinal diseases are very common; for example, the risk of osteoporotic fracture is 40% for White women and 13% for White men in the United States during their lifetime. Hence, the total number of surgical spinal treatments is on the rise with the aging population, and accurate diagnosis is of great importance to avoid complications and a reappearance of the symptoms. Imaging and analysis of a vertebral column is an exhausting task that can lead to wrong interpretations. The overall goal of this contribution is to study a cellular automata-based approach for the segmentation of vertebral bodies between the compacta and surrounding structures yielding to time savings and reducing interpretation errors. Methods:To obtain the ground truth, T2-weighted magnetic resonance imaging acquisitions of the spine were segmented in a slice-by-slice procedure by several neurosurgeons. Subsequently, the same vertebral bodies have been segmented by a physician using the cellular automata approach GrowCut. Results:Manual and GrowCut segmentations have been evaluated against each other via the Dice Score and the Hausdorff distance resulting in 82.99% ± 5.03% and 18.91 ± 7.2 voxel, respectively. Moreover, the times have been determined during the slice-by-slice and the GrowCut course of actions, indicating a significantly reduced segmentation time (5.77 ± 0.73 min) of the algorithmic approach. Conclusion:In this contribution, we used the GrowCut segmentation algorithm publicly available in three-dimensional Slicer for three-dimensional segmentation of vertebral bodies. To the best of our knowledge, this is the first time that the GrowCut method has been studied for the usage of vertebral body segmentation. In brief, we found that the GrowCut segmentation times were consistently less than the manual segmentation times. Hence, GrowCut provides an alternative to a manual slice-by-slice segmentation process." @default.
- W2769876677 created "2017-12-04" @default.
- W2769876677 creator A5010662766 @default.
- W2769876677 creator A5032148962 @default.
- W2769876677 creator A5090717297 @default.
- W2769876677 date "2017-11-13" @default.
- W2769876677 modified "2023-10-16" @default.
- W2769876677 title "Vertebral body segmentation with <i>GrowCut</i>: Initial experience, workflow and practical application" @default.
- W2769876677 cites W1482417937 @default.
- W2769876677 cites W1562754957 @default.
- W2769876677 cites W1602210621 @default.
- W2769876677 cites W1839029107 @default.
- W2769876677 cites W1967595294 @default.
- W2769876677 cites W1979064019 @default.
- W2769876677 cites W1980097377 @default.
- W2769876677 cites W1983272437 @default.
- W2769876677 cites W1985446470 @default.
- W2769876677 cites W1986238913 @default.
- W2769876677 cites W1988007434 @default.
- W2769876677 cites W1988382024 @default.
- W2769876677 cites W1993947467 @default.
- W2769876677 cites W2003656004 @default.
- W2769876677 cites W2016428141 @default.
- W2769876677 cites W2028095419 @default.
- W2769876677 cites W2033190238 @default.
- W2769876677 cites W2037468852 @default.
- W2769876677 cites W2067399451 @default.
- W2769876677 cites W2080067642 @default.
- W2769876677 cites W2080541232 @default.
- W2769876677 cites W2097583462 @default.
- W2769876677 cites W2099290282 @default.
- W2769876677 cites W2108319759 @default.
- W2769876677 cites W2111381594 @default.
- W2769876677 cites W2113828985 @default.
- W2769876677 cites W2120171164 @default.
- W2769876677 cites W2121578625 @default.
- W2769876677 cites W2121947440 @default.
- W2769876677 cites W2131422491 @default.
- W2769876677 cites W2143944233 @default.
- W2769876677 cites W2166036944 @default.
- W2769876677 cites W2513411538 @default.
- W2769876677 cites W2536847023 @default.
- W2769876677 doi "https://doi.org/10.1177/2050312117740984" @default.
- W2769876677 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29163946" @default.
- W2769876677 hasPublicationYear "2017" @default.
- W2769876677 type Work @default.
- W2769876677 sameAs 2769876677 @default.
- W2769876677 citedByCount "12" @default.
- W2769876677 countsByYear W27698766772019 @default.
- W2769876677 countsByYear W27698766772020 @default.
- W2769876677 countsByYear W27698766772021 @default.
- W2769876677 countsByYear W27698766772022 @default.
- W2769876677 crossrefType "journal-article" @default.
- W2769876677 hasAuthorship W2769876677A5010662766 @default.
- W2769876677 hasAuthorship W2769876677A5032148962 @default.
- W2769876677 hasAuthorship W2769876677A5090717297 @default.
- W2769876677 hasBestOaLocation W27698766771 @default.
- W2769876677 hasConcept C126838900 @default.
- W2769876677 hasConcept C141071460 @default.
- W2769876677 hasConcept C141898687 @default.
- W2769876677 hasConcept C143409427 @default.
- W2769876677 hasConcept C153180895 @default.
- W2769876677 hasConcept C154945302 @default.
- W2769876677 hasConcept C2781012678 @default.
- W2769876677 hasConcept C2908647359 @default.
- W2769876677 hasConcept C41008148 @default.
- W2769876677 hasConcept C71924100 @default.
- W2769876677 hasConcept C89600930 @default.
- W2769876677 hasConcept C99454951 @default.
- W2769876677 hasConceptScore W2769876677C126838900 @default.
- W2769876677 hasConceptScore W2769876677C141071460 @default.
- W2769876677 hasConceptScore W2769876677C141898687 @default.
- W2769876677 hasConceptScore W2769876677C143409427 @default.
- W2769876677 hasConceptScore W2769876677C153180895 @default.
- W2769876677 hasConceptScore W2769876677C154945302 @default.
- W2769876677 hasConceptScore W2769876677C2781012678 @default.
- W2769876677 hasConceptScore W2769876677C2908647359 @default.
- W2769876677 hasConceptScore W2769876677C41008148 @default.
- W2769876677 hasConceptScore W2769876677C71924100 @default.
- W2769876677 hasConceptScore W2769876677C89600930 @default.
- W2769876677 hasConceptScore W2769876677C99454951 @default.
- W2769876677 hasLocation W27698766771 @default.
- W2769876677 hasLocation W27698766772 @default.
- W2769876677 hasLocation W27698766773 @default.
- W2769876677 hasLocation W27698766774 @default.
- W2769876677 hasLocation W27698766775 @default.
- W2769876677 hasLocation W27698766776 @default.
- W2769876677 hasLocation W27698766777 @default.
- W2769876677 hasOpenAccess W2769876677 @default.
- W2769876677 hasPrimaryLocation W27698766771 @default.
- W2769876677 hasRelatedWork W2322974909 @default.
- W2769876677 hasRelatedWork W2358941527 @default.
- W2769876677 hasRelatedWork W2394327295 @default.
- W2769876677 hasRelatedWork W2748952813 @default.
- W2769876677 hasRelatedWork W2769876677 @default.
- W2769876677 hasRelatedWork W2899084033 @default.
- W2769876677 hasRelatedWork W3184597106 @default.
- W2769876677 hasRelatedWork W3188463548 @default.