Matches in SemOpenAlex for { <https://semopenalex.org/work/W2769881504> ?p ?o ?g. }
- W2769881504 endingPage "21" @default.
- W2769881504 startingPage "13" @default.
- W2769881504 abstract "ABSTRACT Missing and irregular ground‐penetrating radar trace data resulting from sampling conditions are important issues in engineering. This study adopted compressive sensing theory to reconstruct missing ground‐penetrating radar trace data. A ground‐penetrating radar data reconstruction method was established based on compressive sensing theory and K‐singular value decomposition. The method used the sampling matrix of the missing data as the measurement matrix and the K‐singular value decomposition algorithm to obtain a complete dictionary of sparse coefficients. A traditional dictionary cannot be adaptively adjusted according to the data features; the proposed method resolved this problem. The iteratively reweighted least‐squares method was used to reconstruct the missing trace data. Two experiments on the recovery of missing ground‐penetrating radar data through a simulation and a field example were conducted to test the feasibility and effectiveness of the proposed method." @default.
- W2769881504 created "2017-12-04" @default.
- W2769881504 creator A5022798957 @default.
- W2769881504 creator A5052504306 @default.
- W2769881504 creator A5082518648 @default.
- W2769881504 date "2017-05-01" @default.
- W2769881504 modified "2023-10-11" @default.
- W2769881504 title "GPR data reconstruction method based on compressive sensing and K‐SVD" @default.
- W2769881504 cites W1533705929 @default.
- W2769881504 cites W1972967427 @default.
- W2769881504 cites W1977252496 @default.
- W2769881504 cites W1999738916 @default.
- W2769881504 cites W2050014409 @default.
- W2769881504 cites W2059696767 @default.
- W2769881504 cites W2070678378 @default.
- W2769881504 cites W2078950363 @default.
- W2769881504 cites W2117102180 @default.
- W2769881504 cites W2132978155 @default.
- W2769881504 cites W2158771285 @default.
- W2769881504 cites W2167604521 @default.
- W2769881504 cites W2169165793 @default.
- W2769881504 cites W2327993253 @default.
- W2769881504 cites W2403664921 @default.
- W2769881504 cites W3125735862 @default.
- W2769881504 cites W4250955649 @default.
- W2769881504 doi "https://doi.org/10.3997/1873-0604.2017030" @default.
- W2769881504 hasPublicationYear "2017" @default.
- W2769881504 type Work @default.
- W2769881504 sameAs 2769881504 @default.
- W2769881504 citedByCount "3" @default.
- W2769881504 countsByYear W27698815042021 @default.
- W2769881504 countsByYear W27698815042022 @default.
- W2769881504 countsByYear W27698815042023 @default.
- W2769881504 crossrefType "journal-article" @default.
- W2769881504 hasAuthorship W2769881504A5022798957 @default.
- W2769881504 hasAuthorship W2769881504A5052504306 @default.
- W2769881504 hasAuthorship W2769881504A5082518648 @default.
- W2769881504 hasConcept C106131492 @default.
- W2769881504 hasConcept C106487976 @default.
- W2769881504 hasConcept C11413529 @default.
- W2769881504 hasConcept C119857082 @default.
- W2769881504 hasConcept C121332964 @default.
- W2769881504 hasConcept C124851039 @default.
- W2769881504 hasConcept C127313418 @default.
- W2769881504 hasConcept C138885662 @default.
- W2769881504 hasConcept C140779682 @default.
- W2769881504 hasConcept C163716315 @default.
- W2769881504 hasConcept C185592680 @default.
- W2769881504 hasConcept C22789450 @default.
- W2769881504 hasConcept C31972630 @default.
- W2769881504 hasConcept C41008148 @default.
- W2769881504 hasConcept C41895202 @default.
- W2769881504 hasConcept C43617362 @default.
- W2769881504 hasConcept C554190296 @default.
- W2769881504 hasConcept C56372850 @default.
- W2769881504 hasConcept C62520636 @default.
- W2769881504 hasConcept C62649853 @default.
- W2769881504 hasConcept C71813955 @default.
- W2769881504 hasConcept C75291252 @default.
- W2769881504 hasConcept C76155785 @default.
- W2769881504 hasConcept C9357733 @default.
- W2769881504 hasConceptScore W2769881504C106131492 @default.
- W2769881504 hasConceptScore W2769881504C106487976 @default.
- W2769881504 hasConceptScore W2769881504C11413529 @default.
- W2769881504 hasConceptScore W2769881504C119857082 @default.
- W2769881504 hasConceptScore W2769881504C121332964 @default.
- W2769881504 hasConceptScore W2769881504C124851039 @default.
- W2769881504 hasConceptScore W2769881504C127313418 @default.
- W2769881504 hasConceptScore W2769881504C138885662 @default.
- W2769881504 hasConceptScore W2769881504C140779682 @default.
- W2769881504 hasConceptScore W2769881504C163716315 @default.
- W2769881504 hasConceptScore W2769881504C185592680 @default.
- W2769881504 hasConceptScore W2769881504C22789450 @default.
- W2769881504 hasConceptScore W2769881504C31972630 @default.
- W2769881504 hasConceptScore W2769881504C41008148 @default.
- W2769881504 hasConceptScore W2769881504C41895202 @default.
- W2769881504 hasConceptScore W2769881504C43617362 @default.
- W2769881504 hasConceptScore W2769881504C554190296 @default.
- W2769881504 hasConceptScore W2769881504C56372850 @default.
- W2769881504 hasConceptScore W2769881504C62520636 @default.
- W2769881504 hasConceptScore W2769881504C62649853 @default.
- W2769881504 hasConceptScore W2769881504C71813955 @default.
- W2769881504 hasConceptScore W2769881504C75291252 @default.
- W2769881504 hasConceptScore W2769881504C76155785 @default.
- W2769881504 hasConceptScore W2769881504C9357733 @default.
- W2769881504 hasIssue "1" @default.
- W2769881504 hasLocation W27698815041 @default.
- W2769881504 hasOpenAccess W2769881504 @default.
- W2769881504 hasPrimaryLocation W27698815041 @default.
- W2769881504 hasRelatedWork W2356754952 @default.
- W2769881504 hasRelatedWork W2366839571 @default.
- W2769881504 hasRelatedWork W2374146176 @default.
- W2769881504 hasRelatedWork W2737338842 @default.
- W2769881504 hasRelatedWork W2946057701 @default.
- W2769881504 hasRelatedWork W3005946484 @default.
- W2769881504 hasRelatedWork W4223960160 @default.
- W2769881504 hasRelatedWork W4315471419 @default.
- W2769881504 hasRelatedWork W4386931161 @default.